

SHRI RAMDEOBABA COLLEGE OF ENGINEERING AND MANAGEMENT, NAGPUR

An Autonomous College of Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India

TEACHING SCHEME & SYLLABUS 2014-15

B.E. FIRST YEAR

Teaching Scheme for First Year (Semester I and II) Bachelor of Engineering

GROUP 1: SEMESTER I / GROUP 2: SEMESTER II

Sr.	Code	Course	L	Т	Р	Credits	Ma	ximum Ma	arks	Exam
No.							Internal	End Sem		Duration
							Assessment	Exam	Total	
1	MAT101/	Engineering								
	MAT102	Mathematics-I/II	4	1	0	9	40	60	100	3 Hrs.
2	CHT101	Engineering Chemistry	4	1	0	9	40	60	100	3 Hrs.
3	CHP101	Engineering Chemistry lab	0	0	3	3	25	25	50	-
4	EET101	Electrical Engineering	3	1	0	7	40	60	100	3 Hrs.
5	EEP101	Electrical Engineering lab	0	0	2	2	25	25	50	-
6	CST101	Computer Programming	2	0	0	4	40	60	100	3 Hrs.
7	CSP101	Computer Programming lab	0	0	2	2	25	25	50	-
8	HUT101	Communication Skills	2	0	0	4	40	60	100	3 Hrs.
9	HUP101	Communication Skills lab	0	0	2	2	25	25	50	-
10	PEP101	Sports/Yoga	0	0	2	0	-	-	-	-
		TOTAL	15	3	11	42	300	400	700	

Teaching Scheme for First Year (Semester I and II) Bachelor of Engineering

Sr.	Code	Course	L	Т	Р	Credits	Maximum Marks		Exam	
No.							Internal	End Sem		Duration
							Assessment	Exam	Total	
1	MAT102/	Engineering								
	MAT101	Mathematics-II/I	4	1	0	9	40	60	100	3 Hrs.
2	PHT101	Engineering Physics	4	1	0	9	40	60	100	3 Hrs.
3	PHP101	Engineering Physics lab	0	0	3	3	25	25	50	-
4	CET101	Engineering Mechanics	3	1	0	7	40	60	100	3 Hrs.
5	CEP101	Engineering Mechanics lab	0	0	2	2	25	25	50	-
6	INT101	Engineering Drawing	3	0	0	6	40	60	100	4 Hrs.
7	INP101	Engineering Drawing lab	0	0	3	3	25	25	50	-
8	HUT102	Social Skills	2	0	0	4	40	60	100	3 Hrs.
9	INP102	Workshop	0	0	2	2	25	25	50	-
		TOTAL	16	3	10	45	300	400		

GROUP 1 : SEMESTER II / GROUP 2 : SEMESTER I

2 —

Syllabus of Group 1 - Semester I and Group 2 - Semester I, Bachelor of Engineering				
Course Code : MAT101	Course : Engineering Mathematics-I			
L: 4 Hrs., T: 1 Hrs., P: 0 Hrs., Per week	Total Credits : 09			

Course Outcomes

Upon successful completion of the course, the student should be familiar with and be able to

- 1. Formulate and analyze mathematical problems, precisely define the key terms, and draw clear and reasonable conclusions.
- 2. Read, understand, and construct correct mathematical model for simple electrical circuits, mechanical systems and other related engineering problems.
- 3. Apply techniques of differential calculus to obtain the solution of mathematical models of physical systems and use optimization technique.
- 4. Continue to acquire mathematical knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematics

Syllabus

Unit - I:

Ordinary Differential Calculus: Successive differentiation, Taylor's and Maclaurin's series for function of one variable, indeterminate forms, curvature, radius of curvature and circle of curvature.

Unit - II:

Partial Differentiation: Functions of several variables, first and higher order derivative, Euler's Theorem, Chain rule and Total differential coefficient, Jacobians. Taylor's and Maclaurin's series for function of two variables, Maxima and minima for function of two variables, Lagrange's method of undetermined multipliers.

Unit - III:

Infinite Series: Convergence, divergence and oscillation of series, General properties, Tests of convergence, Alternating series.

Unit - IV:

First Order Differential Equation: First order first degree differential equations: Linear, reducible to linear, exact and reducible to exact differential equations; Non-linear differential equations.

Unit - V:

Higher Order Differential Equation: Higher order differential equations with constant coefficient, method of variation of parameters, Cauchy's and Legendre's homogeneous differential equations, simultaneous differential equations, differential equation of the type $d^2y/dx^2 = f(x)$ and $d^2y/dx^2 = f(y)$.

Unit - VI:

Applications of Differential Equation: Applications of first order first degree differential equations: Simple electrical circuits in series. Application of higher order differential equations: Mechanical and electrical Oscillatory circuits (free, damped free, forced oscillations)

Text Books:

- 1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, Delhi.
- 2. A text book of Applied Mathematics Volume I & II, by P. N. Wartikar and J. N. Wartikar, Pune Vidhyarthi Griha Prakashan, Pune-411030 (India)
- 3. Advanced Engineering Mathematics, 2 ed , Jain , lynger , Narosa publication

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, Neekunj print process, Delhi.
- 2. Schaum's Outline of Differential Equations, Richard Bronson, TMH, 3ed, New Delhi
- 3. Engineering Mathematics by Srimanta, Paul
- 4. A text book of Applied Mathematics I, T. Singh, K.L. Sarda, Professional Publishing House Pvt.Ltd., Nagpur.

Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of EngineeringCourse No. CHT101Course : Engineering ChemistryL: 4 Hrs., T: 1 Hrs., P: 0 Hrs., Per weekTotal Credits : 09

Course Outcomes :

Upon successful completion of the course, the student should be familiar with and be able to gain

- Knowledge of water analysis, waste water analysis, boiler water chemistry and desalination of water enable the students to overcome the difficulties, to a larger extent; that often come across in the field of i) Civil engineering, ii) Public health and environmental engineering iii) Ocean engineering iv) thermal and electrical power generation sectors and process engineering.
- 2. Better understanding to surmount over the difficulties faced in the selection of proper and economical constructional materials to be used; the impact of change in the physicochemical and mechanical properties of the concrete type composites due to variation in their chemical composition.
- 3. There are many different ways in which the abundant energy around us can be harnessed converted and exploited for our use. The ability to harness and its use for constructive purposes as economically as possible is a challenge before mankind. Under these circumstances it is imperative that sustainable energy sources with less attardent problems are developed to meet the ever increasing energy demand. The course content related to energy recourses incorporated in the syllabus fulfills the basic requirement for having acquaintance with the field. Application of knowledge of conventional sources of energy used in thermal, electrical, nuclear power, generations; harnessing new vistas to upgrade and uplift unconventional sources of energy.
- 4. To apply the knowledge of 'Principles of Tribology' for reduction of friction and wear in the process engineering, manufacturing and production engineering and automotive engineering fields.
- 5. Shall help to judiciously select and design proper engineering materials having better corrosion resistance and sustainability and implement the effective measures to minimize the corrosion wherever possible.
- 6. Better insight in the selection of materials for modern technologies which demand with unusual combination of properties that cannot met by any of the conventional metal alloys, ceramics and polymeric materials viz in aerospace applications, military warfare materials, nuclear installations, electrical electronic components devices, nanotechnology materials process engineering field etc.
- 7. Air acquaintance with all kinds of pollution hazards, combating measures to minimize these in the day to day working; to adopt / to develop better skill to assess the environmental impact on the surroundings and its result oriented management to off load the pollution emissions in almost all walks of various engineering disciplines.

Syllabus

Water Treatment :

Water Treatment for Industrial Applications: Brief introduction regarding sources, impurities in water, hardness of water and their types. Softening of water using lime-soda process: principles in hot and cold lime-soda process. Zeolite softener, demineralization by synthetic ion exchange resins. Boiler troubles: Carryover, Priming and Foaming, Scales and Sludges, Caustic Embrittlement, Boiler Corrosion-causes and effects on boiler operation and methods of prevention. External and Internal conditioning: Phosphate, Carbonate and Calgon conditioning.

Water Treatment for Domestic Water:

8 -

Domestic water treatment : brief discussion and Chemistry involved in the process of sedimentation, coagulation, filtration and sterilization by UV, Ozone, Chlorination including Break point chlorination. Desalination of water using reverse osmosis and electro dialysis.

Numericals Based on Water Softening: Numericals based on (1) lime-soda (2) zeolite / ion-exchange water treatment processes.

Cement :

Process parameters involved in the manufacturing of portland cement, manufacture of portland cement, microscopic constituents of cement and their effects on strength; setting and hardening of cement.

Types and uses of cement : Pozzolonic; Rapid hardening, Low heat and High alumina cements. Additives and admixtures used in cement: Accelerators, Retarders, Air entrainment agents, Water repellants.

Chemical approach to Nanomaterials :

General introduction to nanotechnology, timeline and milestone, overview of different nanomaterials available, potential use of nanomaterials in electronics, sensors, medical applications, catalysis, environment and cosmetics.

Physical chemistry related to nanoparticles such as colloids and clusters: conductivity and enhanced catalytic activity compared to the same materials in the macroscopic state.

Synthesis of nanomaterials: 'Top-Down'- photolithography and 'Bottom-Up'- sol-gel method.

Carbon nanotubes: single-walled and multi-walled carbon nanotubes, their structures, properties and applications.

Potential risks of nanomaterials-health and environmental impact.

Fuels and combustion :

Introduction, calorific value, higher and lower calorific value, flame temperature and flame intensity, determination of calorific value by Bomb calorimeter and Boy's calorimeter, numericals based on the determination of calorific value by Bomb and Boy's Calorimater.

Solid Fuels:

Types of coals, proximate and ultimate analysis of coal, its significance, Carbonization of Coal.

Liquid and Gaseous Fuels:

Liquid fuels: mining & fractional distillation of crude petroleum, use of gasoline in internal combustion engine, octane number, cetane number, flash point of combustible liquid fuel, knocking. Fisher-Tropsch's process for manufacture of synthetic gasoline, thermal and catalytic cracking: fixed bed and fluid bed catalytic cracking, aviation gasoline.

Gaseous fuels:

CNG and Significance of flue gas analysis by Orsat apparatus.

Numericals based on Combustion Calculations:

Numericals based on combustion calculations for solid fuels. Numericals based on combustion calculations for liquid and gaseous fuels.

Friction, Wear and Lubricants :

Introduction, Iubrication mechanism, hydrodynamic, boundary and extreme pressure Iubrication.

Classification of lubricants- Solid, Semisolid and Liquid lubricants, Blended oils using different additives viz.:-Anti-oxidants, E. P. additive, corrosion inhibitor, viscosity index improver, etc.), synthetic lubricants viz.:-Dibasic acid esters, Polyglycol ethers and Silicones, Lubricating Emulsions. Properties of Greases, Drop point and consistency test, Properties of liquid lubricants: Viscosity and Viscosity Index, Aniline point, Cloud & Pour point and Decomposition stability. Criteria for selection of lubricants under different conditions of load and speeds.

Corrosion :

Electrochemistry and Theories of Corrosion :

Introduction to corrosion, Cause and Consequences of corrosion, Measurement of corrosion rate, Galvanic series, Dry and Wet corrosion, Pilling-Bedworth rule, factors affecting the rate of corrosion.

Types of corrosion and Preventive Methods: Different types of corrosion (Pitting, Stress, Intergranular and Galvanic), protection against corrosion, design and selection of engineering materials, cathodic and anodic protection, Brief discussion about Protective Coatings: Metallic, Inorganic, Organic coatings, Corrosion inhibitors.

Text Books :

- 1. Text Book of Engineering Chemistry, S. S. Dara, S. Chand and Company Ltd., New Delhi.
- 2. Textbook of Engineering Chemistry, P. C. Jain and Monica Jain, Dhanpat Rai and Sons, New Delhi.
- 3. Text Book of Environmental Chemistry and Pollution Control, S. S. Dara; S. Chand and Company Ltd., New Delhi.
- 4. Textbook of Engineering Chemistry, S. N. Narkhede, R. T. Jadhav, A. B. Bhake, A. U. Zadgaonkar, Das Ganu Prakashan, Nagpur.
- 5. Applied Chemistry, A. V. Bharati and Walekar, Tech Max Publications, Pune.
- 6. Engineering Chemistry, Arty Dixit, Dr. Kirtiwardhan Dixit, Harivansh Prakashan, Chandrapur.

- 1. Engineering Chemistry by Gyngell, McGraw Hill Publishing Company, New Delhi.
- 2. Engineering Chemistry (Vol I), Rajaram and Curiacose, Tata McGraw Hill Publishing Company, New Delhi.
- 3. Engineering Chemistry (Vol II), Rajaram and Curiacose, Tata McGraw Hill Publishing Company, New Delhi.
- 4. Engineering Chemistry, Saraswat and Thakur, Vikas Publication, New Delhi.
- 5. Engineering Chemistry, B. S. Sivasankar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 6. Engineering Chemistry, O. G. Palan, Tata Mcgraw Hill Publishing Company, New Delhi.
- 7. Engineering Chemistry, R. Shivakumar, Tata Mcgraw Hill Publishing Company, New Delhi.
- 8. Chemistry of Cement, J. D. Lee, Mcgraw Hill Publishing Company, New Delhi.
- 9. Nanomaterials Chemistry, C. N. R. Rao, A. Muller, A. K. Cheetam, Wiley VCH verlag GmbH and Company, Weinheim.

Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of EngineeringCourse Code :CHP101Course: Engineering Chemistry LabL:0 Hr., T:0Hrs., P:3 Hrs., Per weekTotal Credits : 03

Minimum of Eight practicals will be performed based on the theory. Text Books :

- 1. Text Book on Experiments and Calculations in Engineering Chemistry: S. S. Dara; S. Chand and Company Ltd., New Delhi.
- 2. Practical Engineering Chemistry: S. N. Narkhede, R. T. Jadhav, A. B. Bhake, A. U. Zadgaonkar, Das Ganu Prakashan, Nagpur.

Reference Books :

1. Concise Laboratory Manual in Engineering Chemistry: R. Shivakumarand J. Prakasan, Tata McGraw Hill Publishing Company, New Delhi.

Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of EngineeringCourse Code : EET101Course : Electrical EngineeringL:3 Hr., T:1 Hrs., P:0 Hrs., Per weekTotal Credits : 07

Course Outcomes :

Upon successful completion of the course, the student should be familiar with and be able to

- 1. understand the different laws of electric and magnetic circuits.
- 2. Students will understand the vector representation of electrical quantities, power factor and its improvement.
- 3. Understand the concept generation, transmission and distribution.
- 4. Learn and understand the necessity of electrical earthling, safety and protecting devices.
- 5. Learn and understand construction, principle, applications and performance evaluation methods of transformer, D.C. Machine, Induction Motor.
- 6. Learn about the illumination sources and their selections.
- 7. Understand the basic philosophy of energy tariff.

Unit-I:

DC Electric Circuits: Definition of EMF, Current, Power, Energy Resistance, Variation of resistance with physical parameters viz. length, area, specific resistivity and temperature. Ohm's law, resistances in series and parallel, current and voltage division rules, KVL & KCL, star delta transformation and related numerical. Measurement of DC electrical quantities.

Magnetic Circuit: Concept of MMF, Flux, reluctance, analogy with electric circuits, B-H curve, simple numerical on series magnetic circuits.

Unit-II:

AC Circuits: Generation of single phase and three phase alternating EMF. Average and RMS values for sinusoidal waveform. Phasor representation of sinusoidal electrical quantities, Steady state behavior of RLC circuits with sinusoidal excitation. Reactance, impedance, Power & Energy in AC Circuits. Simple numerical on series and parallel AC circuits. Concept & importance of power factor & its improvement (with simple numerical).

Simple analysis of balanced three phase AC circuits, Star-delta resistive networks. Measurement of AC electrical quantities.

Unit-III:

Introduction to Electrical Power System :

Introduction to Power Generation (Thermal, Hydro, Nuclear, Wind and Solar) with block schematic representation only. Single line diagram for Generation, Transmission & Distribution through different voltage levels; Low voltage radial distribution system (Over head & underground, single phase and three phase). Necessity of equipment earthings, Fuses (Rewirable and HRC), MCB, ELCB.Basic operation of UPS and Inverters (Block schematic representation).

Unit-IV:

Single phase Transformer :

Principle of operation, Construction Transformer ratings, No load and On load operation with leakage reluctance, losses, efficiency, Definition & formula for voltage regulation, OC/ SC test, equivalent circuit referred to primary side of transformer.

Unit-V:

Rotating Electric Machines :

DC Machines: DC Generator-Principle of working, construction (without details of armature winding), classification of DC generators. DC Motors-Back EMF, necessity of starters, speed and torque equations, characteristics of motors, speed control of DC motors (without numerical), Application of DC motors.

Three Phase Induction Motors: Working principles, types and construction of three phase Induction Motor, synchronous speed, torque, sleep, torque speed characteristics, applications of three phase Induction motor.

Single Phase Induction Motors: operating principle of capacitor start and run single phase induction motor and its applications.

Unit-VI:

Utilization of Electrical Energy :

Illumination: Definition of luminous flux, luminous intensity, Candle power, illumination, Luminance, Luminous efficiency (lumens/watt) of different types of lamps, working principle of Fluorescent/Sodium Vapour/ Mercury vapor & CFL Lamps. Simple numerical to determine number of lamps to attain a given average lux level in an area.

Electric Heating: Advantages of Electrically produced heat, types and applications of Electric heating equipment, transfer of heat (conduction, convection, radiation); Resistance ovens, Induction heating (Core & coreless type), Dielectric heating. (Note. Numerical excluded)

Tariff: One part (KWH based) tariff with simple numerical; to calculate the domestic electricity charges.

Text Books :

- 1. Elements of Electrical sciences: P. Mukhopadhyay, N. Chand & Bros Roorkee (1989).
- 2. Electrical Technology: B. L. Thareja, S. Chand Publications.
- 3. Basic Electrical Engineering: S. B. Bodkhe, N. M. Deshkar, P. P. H. Pvt. Ltd.

Reference Books :

- 1. Basic Electrical Engineering: T.K. Nagasarkar& M. S. Sukhija, Oxford Univ. Press.
- 2. Utilization of Electrical Energy: H. Pratab, Dhanpatrai& Sons.
- 3. Utilization of Electrical Energy: E. Openshaw Taylor, Orient Longman.
- 4. Websites: www.powermin.nic.in, www.mnes.nic.in, www.mahaurja.com.

1

Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of EngineeringCourse Code :EEP101Course: Electrical Engineering LabL:0 Hr., T:0Hrs., P:2 Hrs., Per weekTotal Credits : 02

Course Outcomes :

Upon successful completion of the course, the student should be familiar with and be able to

- 1. Understand the different laws of electric and magnetic circuits.
- 2. Understand the vector representation of electrical quantities, power factor and its improvement.
- 3. Understand the concept generation, transmission and distribution.
- 4. Learn and understand the necessity of electrical earthling, safety and protecting devices.
- 5. Learn and understand construction, principle, applications and performance evaluation methods of transformer, D. C. Machine, Induction Motor.
- 6. Learn about the illumination sources and their selections.
- 7. Understand the basic philosophy of energy tariff.

List of Experiments :

- 1. To verify Kirchoff's voltage and current law using D.C. source.
- 2. To plot the magnetization curve (B-H) for magnetic material of transformer
- 3. To study the R-L-C series circuit with AC source
- 4. To study R-L-C parallel circuit with AC source
- 5. To perform direct load test on 1-phase transformer for finding regulation and efficiency
- 6. To perform open circuit and short circuit tests on 1-phase transformer
- 7. To study 3-phase star delta connections and verify different relations
- 8. To study the speed control techniques for DC shunt motor

Syllabus of Group 1 - Semester I	and Group 2 - Semester II, Bachelor of Engineering
Course Code: CST101	Courses: Computer Programming
L: 2 Hrs. T: 0 Hrs. P: 0 Hrs. Per week	Total Credits: 4

Course Outcomes

On successful completion of the course, students will be able to

- 1. Design and code well-structured C programs, flowcharts, algorithms etc.
- 2. Write program on the basis of decision control structures and loop control structures.
- 3. Perform sorting and various other operations on 1-D and 2-D array.
- 4. Perform operations on structures, functions and pointers.

Syllabus

Unit-I:

Computer Fundamentals: Basic Structure of a computer, Input/output devices and memories and types of computer. Introduction to DOS and Windows OS, Number Systems: Decimal, Binary, Octal, Hexadecimal and conversion from one to another. Algorithm – Conventions used in writing algorithm, Software Life Cycle, Program and Programming Language System Software- Translator, Compiler, Interpreter, Linker, Loader. Languages – Procedural, Object oriented, High level, assembly, Machine Language and Flowchart

Unit-II:

C Programming Language: Keyword, Constant, Variable, Data types, Operators, Types of Statements, Preprocessor Directives, Decision Control Statement-if, if-else, Nested if-else statement, Switch case.

Unit-III:

Loop Control Structure: go to, while, for, do while, break, continue Storage class, Enumerated Data types, Renaming Data types with typedef(), Type Casting, Bitwise Operators.

Unit-IV:

Array: Introduction, array Declaration, Single and multidimensional array Pointers: Introduction, Definition and use of pointer, Pointer arithmetic, pointer operators, pointer and array, pointer to pointer

Unit-V:

Structures and Union: Declaring and using structure, Structure initialization, Structure within structure, array of structure, pointer to structure.

Unit-VI:

Function Programming: Introduction, User Defined and Library Function, Parameter passing, Return value, Recursion, pointer and function

Text Books:

- 1. Mastering C: K. R. Venugopal and S. R. Prasad, Tata McGraw Hill
- 2. Programming in ANSI C,5th ed. : E. Balguruswami McGraw Hill

- 1. Let Us C.9thed: Yashwant Kanetkar, BPB Publication
- 2. Programming with C: Byron Gottfried, Schaums Outline Series.

Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of EngineeringCourse Code: CSP 101Course: Computer Programming LabL: 0 Hrs., T: 0 Hrs., P:2 Hrs. Per weekTotal Credits: 2

Course Outcomes :

On successful completion of the course, students will be able to

- 1. Implement programs based on if-else, switch and loop structure.
- 2. Implement programs based on 1-D and 2-D numeric and character arrays.
- 3. Perform operation on structure and pointer.
- 4. Design programs based on functions.

CSP101 practicals based on above CST 101 syllabus

Syllabus of Group 1- Semester I and Group 2-Semester II, Bachelor of EngineeringCourse Code : HUT101Course:-Communication SkillsL:2 Hrs., T:0Hrs., P:0Hrs., Per weekTotal Credits:4

Course Objectives:

The main objective of the subject is to enhance the employability skills of engineering students as well as communication skills at work place. The sub-objectives are:

- 1. To develop students' reading skills and pronunciation.
- 2. To develop technical communication skills through drafting, letter writing, and précis writing.
- 3. To develop literary skills through essay writing.
- 4. To develop public speaking skills of the students.
- 5. To expose the students to the ethics of English language by teaching grammar

Course Outcomes :

- 1. Students have better reading comprehension, pronunciation, and functional English grammar.
- 2. Students are able to write letters and resumes
- 3. Students are able to organize their thoughts for effective presentation and writing.
- 4. Students are able to learn skills to present themselves well in an interview, and handle a Group Discussion

Syllabus

Unit-I :

Communication:

What is Communication, the Media of Communication, Channels of Communication, Barriers to Effective Communication, Role of Communication Skills in Society.

Unit-II :

Reading Comprehension :

The Process of Reading, Reading Strategies Central idea, Tone and Intention, Comprehension Passages for practice.

Unit-III :

Professional Speaking:

Components of an effective talk, Idea of space and time in public speaking, Tone of voice, Body language, Timing and duration of speech, Audio-Visual Aids in speech. Presentation Skills, Group Discussion and Job Interviews

Unit IV :

Orientation to Literary and Scholarly Articles:

Preferably two fictional and two non-fictional texts (Selected by the teachers and the Head). The art of writing

- 17

articles on social, cultural, scientific and technical issues (Paragraph Writing), Exercises.

Unit V :

Business Correspondence:

Types and Formats of Business letters, Routine Business Letters (Inquiry, Order, Instruction, Complaint, Adjustment), Sales Letters, Resumes and Job applications, Business Memos, Emails.

Unit VI:

Grammar:

Synonym and Antonym, Give one word for, Voice, Narration and Comparison of Adjectives and Adverbs, Transformation of sentences and Common Errors, Idioms and Phrases, Note Making, Précis writing.

Text Book :

1. M. Ashraf. Rizvi. Effective Technical Communication. Tata Mc Graw-Hill Publishing Company Limited.2009

Reference Books :

- 1. Sanjay Kumar and Pushp Lata. Communication Skills. Oxford Publication
- 2. Meenakshi Raman and Sangeeta Sharma. Technical Communication. Second Edition Oxford Publication.2011
- 3. Anne Nicholls. Mastering Public Speaking. Jaico Publishing House. 2003
- 4. Dr Asudani .V. H An easy approach to English. Astha Publication Nagpur. 2009, 3rd Edition.

18

Syllabus of Group 1- Semester I and Gro	up 2-Semester II, Bachelor of Engineering
Course Code :- HUP101	Course:-Communication Skills Practical
L:0Hrs.,T:0Hrs.,P:2Hrs.,Per week	Total Credits:2

Course Outcomes

On successful completion of the course, students will be able to

- 1. Learn presentation skills
- 2. Understand effective strategies for Personal Interview and Group Discussions
- 3. Learn and apply effective language skills listening, speaking, reading and writing

Sr. No	Name of the Practical	Activities Taken	Medium of Practical
1	Speaking Skills	 Introduction to effective ways of speaking Oral presentations Extempore / Debate / JAM/Self-introduction 	PPT Based, Activity Based
2	Presentation Skills	1. Preparing visual aids/PPTs on given topics	PPT Based, Activity Based, English Edge software
3	Group Discussion- Orientation	 1. GD types 2. GD techniques/rules - videos 3. General/familiar topics for discussion 	English Edge software Oxford Publication CD, PPT based Activity based
4	Group Discussion- Practice session	 Divide in group of 6 Classification of topics Feedback 	PPT Based, Activity Based
5	Group Discussion-Mock	 Divide in group of 6 Mock GDs - types Feedback 	Activity Based
6	Interview Techniques- Orientation	 Various types of interviews Types of interviews Self-analysis KYC sheet Self-introduction 	English Edge software Oxford Publication CD Activity Based
7	Interview Techniques Practice Sessions	 Video Non-verbal communication Types of interview questions 	Oxford Publication CD, Activity Based
8	Interview Techniques- Mock Interviews	1. Mock Interviews (One to One)	Activity Based
	Optional Practicals	Teacher can decide any other Practical apart from the ones mentioned below	
9	Listening Skills	1. Listening Barriers	PPT Based, Activity Based
10	Non Verbal Communication	1. Kinesics in com/interviews 2. Activities/Role play	English Edge software based, PPT based
11	Use Figurative Language	1. Intro phrases/ Idioms/proverbs/ pronunciation	PPT Based, Activity Based

 Syllabus of Group 1 - Semester I and Group 2 - Semester II, Bachelor of Engineering

 Course Code :PEP101
 Course: Sports/Yoga

 L:0 Hr., T:0Hrs., P:2 Hrs., Per week
 Total Credits : 00

Course Outcomes

On successful completion of the course, students will be able to

- 1. More number of students are participating in sports activities.
- 2. Students interest toward physical fitness has been increased.
- 3. Students are getting basic knowledge of yoga & sports.

BRIEF OBJECTIVES OF SPORTS/YOGA PRACTICAL CLASSES

It has long been proven that a healthy body leads to a healthy mind. With a strong belief in this, Physical Education department at RCOEM will conduct sports/yoga classes with the objective of maintaining health, fitness and wellness of students as well as create awareness about need for good health and physical fitness. The objective would also be todevelop team spirit, social skills as well as identify and develop leadership qualities in students through various sports group activities. Training of students to understand the rules of various national and international games would also be an important objective. Sport activities would also be conducted with the objective to provide recreation to the students which is an important neutralizer for stress. Additionally, the objective would be to evaluate fitness of students so as to recommend and conduct specific Yoga and Sport activities.

PROGRAMME OUTLINE

1. Sports

- 1. Introduction to sports i.e. volleyball, cricket, football, basketball, badminton, T.T., Athletics.
- 2. Health and safety issues related to sports; Knowledge, recognition and ability to deal with injuries and illnesses associated with sports.
- 3. Awareness about sports skills, techniques and tactics.
- 4. Rules, regulations and scoring systems of different games (Indoor & Outdoor).
- 5. Organizing intramurals ie. Fresher's cup- volleyball(G& B), Cricket (G& B), Sadbhavana volleyball(mix team of B& G), Sadbhavana cricket (mix team of B& G).
- 6. Trials of students to participate in inter-collegiate/University level games.
- 2. Yoga: Includes asanas like sitting, standing and lying, Surayanamaskar, Pranayam.

3. Physical fitness test: this would include speed, Cardiovascular Endurance, strength, skill & flexibility, body composition (fat weight & lean body weight).

Syllabus of Group 1 - Semester II and	Group 2 – Semester II, Bachelor of Engineering
Course Code: MAT102	Course: Engineering Mathematics-II
L: 4 Hrs., T: 1 Hrs., P: 0 Hrs., Per week	Total Credits: 09

Course Outcomes

On successful completion of the course, students will be able to

- 1. Identify, formulate and analyze statistical problems, precisely define the key terms, and draw clear and reasonable conclusions.
- 2. Read, understand and analyze problems in Fluid dynamics, Electromagnetic fields and related topics using techniques of vector algebra and calculus.
- 3. To use the knowledge of multiple integrals in finding the area and volume of any region bounded by the given curves.
- 4. Continue to acquire mathematical and statistical knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematics.

Syllabus

Unit-I:

Integral Calculus I: Beta and Gamma functions, Differentiation of definite integrals, Mean value and root mean square values.

Unit-II:

Integral Calculus II: Tracing of curves (Cartesian, polar and parametric curves), rectification of simple curve, quadrature, volumes and surface of solids of revolutions(Cartesian, polar and parametric forms). Theorem of Pappus and Guldin.

Unit-III:

Multiple Integrals and their Applications: Elementary double integrals, change of variable (simple transformation), change of order of integration (Cartesian and polar), application to mass, area, volume and centre of gravity (Cartesian and polar forms), elementary triple integrals.

Unit-IV:

Vector Calculus I: Scalar point function, Vector point function, vector differentiation, gradient, divergence and curl, directional derivatives with their physical interpretations, solenoidal and irrotational motions, Scalar potential function.

Unit-V:

Vector Calculus II: Vector integration: Line integrals, work done, conservative fields, surface integrals and volume integrals, Stoke's theorem, Gauss divergence theorem, Green's theorem and their simple applications.

Unit VI:

Statistics: Fitting of straight line, y = a + bx, parabola $y = a + bx + cx^2$ and the exponential curves by method of least squares, Coefficient of linear correlation, lines of regression, rank correlation, multiple regression and regression plane of the type z = a + bx + cy, coefficient determination.

Text Books:

- 1. Higher Engineering Mathematics, B. S. Grewal, Khanna Publishers, Delhi
- 2. A text book of Applied Mathematics Volume I & II, by P. N. Wartikar and J. N. Wartikar, Pune Vidhyarthi Griha Prakashan, Pune-411030 (India)
- 3. Advanced Engineering Mathematics, 2 ed , Jain , Jynger , Narosa publication

- 1. Advanced Engineering Mathematics by Erwin Kreyszig, 8th edition, Neekunj print process, Delhi.
- 2. Engineering Mathematics: Principal and Applications Srimanta, Paul, Oxford Univ Press, (2011)
- 3. Higher Engineering Mathematics: B.V. Ramana, TMH

Syllabus of Group 1 - Semester II and Group 2 – Semester I, Bachelor of EngineeringCourse Code : PHT101Course : Engineering PhysicsL: 4 Hrs, T: 1 Hr, P : 0 Hr., Per weekTotal Credits : 09

Course Objectives :

- 1. To develop the ability to apply concepts in elementary physics to understanding of engineering applications;
- 2. To introduce more advanced physics concepts, which form the basis of modern engineering;
- 3. To provide a sound foundation in mathematical formulation of concepts learnt and their applications;
- 4. To elaborate the general nature of concepts learnt and of possibility of their cross-disciplinary application;
- 5. To develop skills for numerical problem solving in areas covered

Course Outcomes :

- 1. Develop a better understanding of physics as a fundamental discipline;
- 2. Gain understanding of the type of questions addressed by theories in and methods of physics in different fields of engineering;
- 3. Develop a deeper appreciation of the notion of applying knowledge of physical laws;
- 4. Deepen understanding of certain basic tools, such as state of a system, system response, resonance, coherence, superposition and interference, in thinking about and analyzing physical systems;
- 5. Gain an understanding of developing areas in physics and their possible engineering applications;
- 6. Develop ability to choose a physical approach to understanding of advanced areas in engineering;
- 7. Be comfortable with fundamental ideas in areas like semiconductor, electronic devices, fibre optic communication and quantum mechanics;
- 8. Gain familiarity with the language, fundamental concerns, techniques and applications of nanoscience and nanotechnology

Unit-I:

Optics:

Interference in thin films, division of amplitude and wavefront, wedge-shaped films, Newton's rings, antireflection coatings; Diffraction, single slit, double slit, grating; Bragg's law of crystal diffraction, Different types of polarization of light, Malus' law, Optically anisotropic materials, double refraction, wave-plates and compensators, production and analysis of polarized light.

Unit-II:

Quantum Physics:

Wave-particle duality, wave packets, Heisenberg uncertainty relations; Wave function, probability and probability current, Schrodinger's equation, time dependent equation and its separation; Infinite potential and

22

finite potential wells, phenomenon of tunneling, application to tunneling diode. Unit-III:

LASERs and Optical Fibres:

Interaction of matter and radiation, LASER, spontaneous and stimulated emission, population inversion; Common types of lasers and their applications; Optical fibres, structure, types, propagation in a fibre, modes of propagation, signal attenuation, signal distortion.

Unit-IV:

Elements of Crystal Structure, Mass Spectrograph and Particle Accelerators:

Lattice and basis, crystal systems, centering, Bravais lattices, cubic system, principles of electron optics, cathode ray oscilloscope, mass spectrographs, particle accelerators.

Unit-V:

Semiconductors:

Band structure of solids, band diagrams of insulators, semiconductors and conductors, Fermi level in conductors and semiconductors, carrier concentration, conductivity, effective mass; Junction diode and its band diagram, depletion region and barrier potential, bipolar junction transistor, band diagrams of pnp and npn transistors, transistor action.

Unit-VI:

Nanophysics:

What is Nanotechnology? Fullerenes and nanoparticles; Outline of methods of preparation; Elements of electron microscopy; Outline of properties – physical, thermal, optical, electrical, magnetic; Quantum size-effects; CNTs and molecular electronics; Applications.

Text Books:

- 1. Fundamentals of Physics: D. Halliday, R. Resnik and J. Walker, John Wiley.
- 2. Engineering Physics: S. Jain and G.G. Sahasrabudhe, Universities Press (2010).
- 3. Introduction to Nanoscience and Nanotechnology: K.K. Chattopadhyay and A.N. Banerjee, PHI Learning (2009)

- 1. Electronic Engineering Materials and Devices: J. Allison, TMH.
- 2. Engineering Physics: P.K. Palaniswamy, Scietech (2005).
- 3. Engineering Physics: H. Malik and A.K. Singh, TMH (2010).
- 4. Engineering Physics: D.K. Bhattacharya and A.Bhaskaran, Oxford University Press (2010)
- 5. Materials Science and Engineering A First Course, 5th Ed., V. Raghvan, PHI Learning.

Syllabus of Group 1 - Semester II and Group 2 – Semester I, Bachelor of EngineeringCourse Code: PHP101Course: Engineering Physics LaboratoryL: 0 Hrs., T: 0 Hrs., P: 3 Hrs., Per weekTotal Credits: 03

Course Outcomes :

- 1. Students should be able to perform tasks like leveling, alignment, reading vernier scales, do specific measurements, systematically record observations, do calculations from data collected and draw conclusions.
- 2. Students gain working familiarity with instruments like simple spectrometer, travelling microscope, lenses, prisms, ammeter, voltmeter, the CRO, power supplies etc.;

3. Students gain better understanding of concepts like interference, diffraction, polarization, energy band gap in semiconductor etc.

- 4. Students gain a working knowledge of estimating errors in an experiment for which background theory is known;
- 5. Students should be able to subject data collected to statistical and error analysis.

A minimum of 8 experiments to be performed from the following list of experiments.

List of Experiments :

- 1. Study of interference in thin films: Formation of Newton's rings
- 2. Study of diffraction: Transmission diffraction grating
- 3. Study of diode rectifier equation: Ordinary p-n junction and Zener diode characteristics
- 4. Study of transistor action: Transistor characteristics in common emitter configuration
- 5. Study of Hall effect: Determination of Hall coefficient of an extrinsic semiconductor
- 6. Study of energy bandgap in semiconductor: NTC thermistor bandgap determination
- 7. Study of rectifiers: Determination of ripple factor for half, full and bridge rectifiers
- 8. Linear least squares fit on a PC: Fitting a straight line to measured (x,y) sets
- 9. Study of double refraction: Quartz prism
- 10. Interference in wedge-shaped thin films: Refractive index of liquids, diameter of a wire

11. Use of CRO: Frequency and phase difference determination

Demo experiments: Laser kit to demonstrate diffraction, optical fibre to demonstrate signal attenuation, Interactive Mathematica demonstrations on polarization, wave packets, tunneling, charge particle dynamics and semiconductor devices.

Reference Books:

1. Physics Lab Manual written by the Teaching Faculty of Physics Department, RCOEM.

Syllabus of Group 1 - Semester II and Group 2 - Semester I, Bachelor of EngineeringCourse Code: CET101Course: Engineering MechanicsL:3 Hr., T:1 Hrs., P:0 Hrs., Per weekTotal Credits : 07

Course Outcomes

On successful completion of the course, the subject knowldge will be able to

- 1. Develop students to acquire knowledge of static and dynamic behavior of the bodies.
- 2. Develop students to acquire the knowledge, so that they can understand physical phenomenon with the help of various theories.
- 3. Develop students, who will be able to explain the physical phenomenon with help of diagrams.
- 4. Develop students with a broad vision with the skills of visualizing and developing their own ideas, and to convert those ideas in to engineering problems and solving those problems with the acquired knowledge of the Engineering Mechanics.

Syllabus

Unit-I:

Fundamental of Engineering Mechanics:

Fundamentals of Engineering Mechanics, axiom's of mechanics, resultant of concurrent force system. Moment of a force, couples, resultant of non-concurrent force system

Unit-II:

Equilibrium of Force System :

Equilibrium of concurrent force system, Equilibrium of non-concurrent force system Friction: Law's of friction, simple application, wedge friction, belt friction.

Unit-III:

3-D Force system & Analysis of trusses :

Moment of a force about a point and about an axis, resultant of spatial concurrent & Non concurrent force system, wrench, equilibrium of concurrent and non-concurrent force system. Analysis of simple trusses (Joint & Section Method)

Unit-IV:

Centroids and moment of inertia :

Centroids locating by first principle, centroid of composite areas, Second moment and product of inertia of plane areas. Moment of Inertia of composite areas. Transfer theorems for moment of Inertia and Product of

25

Inertia. Virtual work method Virtual work principle, application of virtual work principle.

Unit-V

Kinematics & Kinetics of Particles :

Rectilinear motion of a particle with variable acceleration, Projectile motion, normal and tangential components of acceleration, kinetics of particle and several interconnected particles. D'Alembert's principle, problems on connected system of particles.

Unit-VI:

Collision of elastic bodies:

Principle of conservation of momentum, Impulse momentum equation, work energy equation, coefficient of restitution, impact of elastic bodies.

Text Books:

- 1. Engineering Mechanics: F. L. Singer Harper & Row Publications.
- 2. Fundamentals of Engineering Mechanics : A.K. Sharma, Sai Publications.
- 3. Engineering Mechanics : A.K. Tayal, Umesh Publications, New Delhi.
- 4. Engineering Mechanics : P.B. Kulkarni, Professional Publications.

- 1. Engineering Mechanics: Timoshenko & Young, Tata McGraw Hill Publications, New Delhi.
- 2. Engineering Mechanics: Bear and Johnston, Tata McGraw Hill Publications, New Delhi.
- 3. Engineering Mechanics: I. H. Shames, Phi Pvt. Ltd., India.

26

Syllabus of Group 1 - Semester II and Group 2 - Semester I, Bachelor of EngineeringCourse Code : CEP101Course : Engineering Mechanics LabL:0 Hr., T:0Hrs., P:2 Hrs., Per weekTotal Credits : 02

Minimum of Eight Practical will be performed based on the theoryList of ExperimentSimple Lifting machinesLaw of machine for Differential Axle and Wheel

- 3. Law of machine for Single Purchase Crab
- 4. Law of machine for Double Purchase Crab
- 5. Equilibrium of force systems
- 6. Jib Crane (Equilibrium of concurrent Forces)
- 7. Simple Beam (Equilibrium of Non-concurrent Forces)
- 8. Friction & Flywheel
- 9. Inclined Plane (Coefficient of friction using Inclined Plane)
- 10. Belt Friction (Coefficient of friction using coil friction set-up)
- 11. Fly-Wheel (Mass moment of Inertia of fly-wheel)
- 12. Resultant of concurrent force systems
- 13. Resultant of Non-concurrent force system
- 14. Reactions for simply supported beams
- 15. Forces in members of simple Trusses
- 16. Mohr's circle method.

Syllabus of Group 1- Semester II & Group 2- Semester I, Bachelor of EngineeringCourse Code: INT101Course : Engineering DrawingL: 3 Hrs. T: 0 Hrs. P: 0 Hrs. Per weekTotal Credits: 06

Course Outcomes :

- 1. Ability to draw & read technical drawings.
- 2. Ability to prepare the sheet layout for the given drawing.
- 3. Ability to convert 2-D drawing to 3-D drawing & vice-versa.
- 4. Ability to understand the various positions of planes, solids in the different orientations.
- 5. Ability to develop the solid surface for sheet metal working.
- 6. Ability to use drafting package (AutoCAD).

Syllabus

UNITI

Drawing Instruments.Lines, Lettering & Dimensioning. Scales - Plain Scale & Diagonal Scale.Vernier Scale. Engineering Curves - Ellipse, Parabola & Hyperbola.

Methods to be covered:

Ellipse: Directrix Focus, Concentric Circles & Rectangle Method. Parabola: Directrix Focus, Oblong- Rectangle & Parallelogram Method. Hyperbola: Directrix Focus & Asymptote Method.

UNIT II

Theory of Projections - Concept of Projection, First & Third angle projection methods. Projections of Points. Projections of Lines: Oblique Lines, Traces. Applications of Projection of Lines.

UNIT III

Projections of Planes - Polygonal Lamina, Circular Lamina.

Projections of Solids- Cube, Prism, Pyramid, Cylinder, Cone. Suspended Solids.

UNIT IV

Sections of Solids & Development-Cube, Prism, Pyramid, Cylinder, Cone.

UNIT V

Isometric Projections: Isometric Scale, Conversion of given 2 dimensional views to Isometric Projection/View. Orthographic Projections: Conversion of given 3 dimensional View to 2 dimensional representation.

UNIT VI

Introduction to AutoCAD: Drafting Basics, Drawing Commands, Modify Commands, Dimensioning.

Text Books:

- 1. Engineering Drawing by N.D. Bhatt, Charothar Publishing.
- 2. Engineering Drawing by D. A. Jolhe, TMH
- 3. Engineering Drawing by K.L. Narayana & P. Kannaiah, SciTech Publication.

Refrences:

- 1. Engineering Drawing by Dhawan
- 2. AutoCAD 14 for Engineering Drawing by P. Nageshwara Rao, TMH

28 –

Syllabus of Group 1- Semester II & Group 2- Semester I, Bachelor of EngineeringCourse Code: INP101Course: Engineering DrawingL: 0 Hrs. T: 0 Hrs. P: 3 Hrs. Per weekTotal Credits: 03

Course Outcomes

- 1. Ability to draw & read technical drawings.
- 2. Ability to prepare the sheet layout for the given drawing.
- 3. Ability to convert 2-D drawing to 3-D drawing & vice-versa.
- 4. Ability to understand the various positions of planes, solids in the different orientations.
- 5. Ability to develop the solid surface for sheet metal working.
- 6. Ability to use drafting package (AutoCAD).

Syllabus

Sheet No.1: Scales & Curves (5 Problems)

Sheet No.2: Projection of Lines (4 Problems)

Sheet No.3: Application of Lines (4 Problems)

Sheet No.4: Projection of Planes (4 Problems)

Sheet No.5: Projection of Solids (4 Problems)

Sheet No.6: Projection of Section of Solids & Development of Surfaces (3 Problems)

Sheet No.7: Isometric Projections (3 Problems)

Sheet No.8: Orthographic Projections (3 Problems)

Any TWO of the above sheets should be solved by using AutoCAD.

Text Books:-

- 1. Engineering Drawing by N.D. Bhatt, Charothar Publishing.
- 2. Engineering Drawing by D. A. Jolhe, TMH
- 3. Engineering Drawing by K.L. Narayana & P. Kannaiah, SciTech Publication.

Refrences:

- 1. Engineering Drawing by Dhawan
- 2. AutoCAD 14 for Engineering Drawing by P. Nageshwara Rao, TMH

Syllabus of Group 1- Semester II and Group 2-Semester I, Bachelor of Engineering

Course Code:-HUT102	Course:-Social Skills
L:2 Hrs.,T:0Hrs.,P:0Hrs.,Per week	Total Credits:4

Course Outcomes

On successful completion of the course, students will be able to

- 1. Learn the basic concepts of personnel management or manpower planning and the process of recruitment and selection that they will go through as engineers.
- 2. Learn leadership skills, industrial relations, work organizations, and impact of industry on society.
- 3. Learn about the political systems and institutions working in India, laws and legislations affecting industry and the application of political principles like democracy in industry.
- 4. Learn the importance and application of Economics in Engineering.
- 5. Learn about culture/civilization and develop cross cultural capacity.
- 6. Learn about Personal, Professional and social ethics.

Syllabus

Unit-I:

Industrial Sociology:-

- Meaning and scope of Industrial Sociology
- Work Organization and its types.
- Concept of Leadership: Meaning, changing roles and its types.
- Concept of Power and Authority: Meaning, Importance, sources and Delegation
- Industrial Culture in India: Effects of Industrialization and Urbanization on Indian Society.

Unit-II:

Industrial Psychology:-

- Meaning and scope of Industrial Psychology
- Recruitment, Selection and Training
- Industrial fatigue
- Motivation, Theories of motivation: Maslow's Need Priority Theory, Macgregor's X And Y Theory, McClelland's Needs Theory
- Dealing with Self: Stress, health, and coping; interpersonal relationships; gender roles; environmental adjustments.

Unit-III:

Political Orientation:-

- Indian Constitution, features and federal structure.
- Fundamental rights
- Directive principles of state policy
- Industrial Democracy.
- Role of Bureaucracy in Modern Democratic states.

30 –

Unit-IV:

Economics:-

- Development of Indian Economy
- Infrastructure in the Indian Economy: Energy, power, transport system, road transport system, Rail-Road co ordination, water transport, Civil aviation, communication system, urban infrastructure, science and technology, private investment in infrastructure.
- Role of Public and Private sector in Indian Economy.
- Challenges before Indian Economy in 21st Century. Poverty, Unemployment, Corruption, Regional Imbalance, Growth of educational sector.

Unit-V:

Culture and Civilization:-

- Concept of Culture and Civilization.
- Study of engineering skills with special reference to Egyptian and Indus Valley Civilization.
- Role of Engineers as agent of change with specific reference to change in Indian Society during 20th and 21st century.
- Multiculturalism: Meaning, scope and significance especially in Indian context.

Unit-VI:

Ethics and social responsibility:-

- Personal and professional ethics
- Corporate social responsibility
- Social capital, social audit.
- Role of entrepreneurship in nation building.
- Developing scientific and humanitarian outlook for the welfare of nation and society.

Text Books :

- 1. S. Shabbir, A.M. Sheikh, and J. Dwadashiwar (2010 reprint) A New Look Into Social Sciences, (5th edition, 2008), S. Chand and Co. Ltd., New Delhi
- 2. RuddarDatt and K.P.M.Sundharam, (67th Revised edition-2013), Indian Economy, S.Chand and Company Ltd, New Delhi.
- 3. Edmund G. Seebauer and Robert L Barry (2010 reprint) Fundamental of Ethics for Scientists and Engineers, Oxford University Press,

- 1. P.C. Tripathi and P.N. Reddy, Principles of Management, (4th edition, 2008), Tata MacGraw Hill Publishing Co. Ltd., New Delhi
- 2. Martand.T. Telsang, Industrial and Business Management, (2001), S.Chand and Co. Ltd. New Delhi
- 3. Dr. V.H. Asudani: An Easy Approach To Social Science, (3rd edition, 2008), Aastha Publications, Nagpur
- 4. Tariq Modood, Multiculturalism (Themes for 21st Century Series)(1st Publication 2007), Polity Press, Cambridge, U.K. ISBN-13:97807456-3288-9.

Syllabus of Groups 1- Semester II and Group 2 – Semester I, Bachelor of EngineeringCourse Code : INP102Course: WorkshopL: 0 Hr., T: 0 Hrs., Per weekTotal Credits : 02

List of Experiments

(A) Carpentry shop

- 1) Introduction of carpentry tools, equipments, machine, material & process.
- 2) Manufacturing of Carpentry joints.
- 3) Turning practice on wood working lathe.
- 4) Demonstration and practice on universal wood working machine.
- (B) Fitting shop
 - 1) Introduction of fitting tools, equipments, machine, material & process.
 - 2) Manufacturing & fitting practice for various joints & assembly.
 - 3) Drilling, tapping and pipe threading operations.
- (C) Welding shop
 - 1) Introduction of welding tools, equipments, machine, material & process.
 - 2) Fabrication of joints like Lap, Butt, Corner, 'T' etc.
 - 3) Fabrication of Lap joint by spot welding process.
- (D) Smithy shop
 - 1) Introduction of smithy tools, equipments, machine, material & process.
 - 2) Forging of combined circular/square/hexagonal cross section.

Text Books:

- 1. Elements of Workshop Technology Vol I by HajraChoudhari
- 2. A course in Workshop Technology Vol I by B.S. Raghuwanshi
- 3. Production Technology (Manufacturing process) by P.C Sharma

- 1. Workshop Manuals
- 2. Manufacturing Technology by P.C Sharma
- 3. Workshop Manual by Kannaiah Narayanan

