

RCOEM Shri Ramdeobaba College of Engineering and Management, Nagpur

Shri Ramdeobaba College of Engineering and Management Center for Invention Innovation Incubation & Training RCOEM-TATA-CIIIT, Nagpur Innovation Design and Incubation Center of Excellence

Integrated Advance Manufacturing Center of Excellence Machine Learning and IoT Center of Excellence

CENTER FOR INVENTION INNOVATION INCUBATION AND TRAINING

Shri Ramdeobaba College of Engineering and Management, Nagpur

RCOEM TECHNOLOGY BUSINESS INCUBATORS FOUNDATION

RCOEM - TATA TECHNOLOGIES - CIIIT

CENTER FOR INVENTION, INNOVATION, INCUBATION AND TRAINING

About TATA Technologies

Tata Technologies makes product development dreams a reality by designing, engineering, and validating the products of tomorrow for the world's leading manufacturers. With more than 9400 professionals serving clients worldwide, Tata Technologies is the manufacturing industry's premier partner for advanced engineering, research and development, product lifecycle management consultancy and software and connected enterprise IT solutions. Tata Technologies 17 global delivery centers spread across India, US, UK, Sweden, Romania, Singapore, China, Japan and Thailand help cater the Automotive, Aerospace and Industrial Heavy Machinery industries.

About RCOEM CIIIT Center

RCOEM in association with Tata Technologies Ltd., has set-up the bench mark of excellence in Engineering & Technology education in Nagpur. CIIIT is at par with the world class technologies. The major objective of CIIIT is, hand-holding of young engineers to develop into professionals catering to industry centric technical skills. ITI, Diploma, Degree, Postgraduate, Ph.D. research scholar and Industry persons can visit, connect and avail the facilities at CIIIT. The facility is open to all the aspirants in region for technical associations and upgradations. **CIIIT comprises of 3 centers of Excellences:**

- Innovation Design and Incubation,
- Integrated Advanced Manufacturing,
- Machine Learning and IoT.

CIIIT provides practical exposure on following machines:

- Arc-welding Robot
- Pick-n-place Robot
- CNC-VMC machines
- Manufacturing Execution system
- 3-D printing & 3-D scanning
- Machine learning & IoT

CIIIT has 10 professional Softwares like,

- MSC Nastran
- MSC Patran
- Adams machinery studio
- 3-D Experience (Catia V6)
- Delmia ScFLOW Marc Easy5
- FEAST i-Get-it (e-Learning Platform)

Shri Ramdeobaba College of Engineering and Management Center for Invention Innovation incubation & Training

RCOEM-TATA-CIIIT, Nagpur

T

ΤΛΤΛ

TATA TECHNOLOGIES

Benchmarks@RCOEM-TATA-CIIIT in last 1 year

- Product/Mold design, 3-D Printing, machine fabrication consultancy proj ect
- About 10 IPRs applied

- Tycathon project 3-D printed with required precision
- More than 15 Training programs completed
- Design of Battery Swapping Switch
- Mobility Robot development.

Courses at CIIIT provide technical competency, value additions and improved chances of employability. The training modules available at CIIIT also provides the opportunity to become entrepreneurs.

COURSES OFFERED AT CHIT

• Concrete testing tool manufactured

S.N.	Name of Certificate Course	Batch Size	Duration	Eligibility
1	3-D Scanning & Reverse Engineering	10		
2	3-D Printing & Additive Manufacturing	10		
3	CNC Programming & VMC Operations	10		
4	Industrial Robot operator (Yaskawa Arc welding)	10		ITI/Diploma/BE/ME
5	Solid modeling Catia V6	15	40 Hrs.	or Pursuing similar technical course
6	Mechatronics & Internet of Things (IoT) Engineering	10		
7	Manufacturing Execution System Engineering / operator	10		
8	Finite Element Analysis (MSC Nastran)	10		

ADVANCED COURSES OFFERED at RCOEM-TATA-CIIIT

Diploma Courses (6+ months)	Certificate Courses (upto 3 months)
Product Design and Validation	• Catia V6 and PLM
Design Thinking for Start Ups, Catia V6 and PLM, Virtual Verification	• Virtual Verification and Analysis
and Analysis, Product Design and Development	• Product Design and Development
 Integrated Advanced Manufacturing 	Additive Manufacturing
Additive Manufacturing, Digital Manufacturing, Industrial Robotics,	Digital Manufacturing
Advanced Manufacturing	Industrial Robotics
 Manufacturing Execution System & IoT 	Advanced Manufacturing
Design Thinking, Manufacturing Execution System, Industrial	Manufacturing Execution System
Robotics, IoT	• Internet of Things (IOT)
 Advanced Product Design Engineering & Manufacturing 	Industrial Automation
Design Thinking for Start Ups, Catia V6 and PLM, Virtual Verification	Miniature Industrial Production
and Analysis, Product Design and Development, Additive	System (MIPS)
Manufacturing, Digital Manufacturing, Industrial Robotics, Advanced	
Manufacturing, Manufacturing Execution System, IoT	

COURSE CONTENTS

CIIIT-01: 3-D Scanning & Reverse Engineering	CIIIT-05: Solid modeling Catia V6		
Introduction to Reverse Engineering	 Innovation and Design Thinking 		
Geometry Acquisition Hardware & Software	 Concept Generation 		
• 3D Scanner and Data Processing	 Introduction to Design Tools - CAD (CATIA v6) 		
Inspection Software	 Concept Creation and 3D Modelling 		
 Hands-on on Reverse Engineering Software 	 Detail Design & Engineering 		
• live Scan technology EinScan-3D Scanner	• Introduction to GUI & Getting Started with CATIA		
• real-time data capture with 3D scanner	• Sketcher Workbench Pad, Shaft, pocket & RP		
• Scanning / Inspection software. EinScan-3D	• Drawing Shapes, Modifying sketch and constraints		
• 3D Scanning (Laser and White / Blue Light)	• Part Design Workbench Practice example		
• Scanned Data to 3D Model, clean up tools	• Sketch based and dress-up features, Holes & Fillet		
• Convert raw 3D scan data into high quality models	Transformation features, Practice example		
• 3D Inspection & Drag and drop Report generation	• Design for Assembly and Design for Manufacturing		
CIIIT-02: 3-D Printing & Additive Manufacturing	CIIIT-06: Mechatronics & Internet of Things (IoT) Engineering		
Intro to Product Design Development	Fundamentals of Electronics and Mechatronics		
• Introduction to 3D Printing Technology	Basics of Electronics and Components		
Geometric/solid modeling	Communication Protocols		
• Facet generation and File types Obj, Stl, Prt etc	Various Micro Processors, Controllers		
Slicing softwares, Cura	Introduction to various Sensors		
• Part orientations and Slicing considerations	IoT Application Arduino IDE		
Slicing parameter settings	• IoT Applications to fields and implementation		
• 3-D Printing materials PLA, ABS, TPU, Wood,	• Cloud Concepts – Firebase		
• 3-D Printing Tolerances	Introduction Raspberry Pi Hardware Integration		
• G code files and FDM 3-D printing	CIIIT-07: Manufacturing Execution System Engineering/ operator		
• Ultimaker FFF-3-D printing	• Introduction to MES, Objective MES, Benefits		
• Post processing	• Discrete, Continuous & Batch Manufacturing		
CIIIT-03: CNC Programming & VMC Operations	Manufacturing Organization Structure		
Introduction to Various Manufacturing Processes	• MES functionality, Integration of Business Layer		
Introduction to Advance Manufacturing Processes	• Integration of Shop floor system		
• CNC Programming and Milling operations	MES Components and Systems Introduction		
CNC Programming and Turning operations	Automation & Process Control, Automation Purpose		
• G-Codes & M-Codes for Milling & Turning	• Basics of Control System PLC and HMI for MES		
• CNC Programming for Drilling operations	• PLC types, applications & programming		
• Fanuc Interface and operating panel	• SCADA Softwares and Design, HMI		
• AIC operations & Work-offset	• Sensors and Actuators - Limit Switch, Prox. Sensor		
• Operating facemill & endmill cutters	• Integration of PLC, Conveyor Belt, Sensors.		
• Subprogram and canned cycle	• Pick to Light System - Overview and Working		
• Manufacturing simulation	• MES Software and Core Functionalities		
CIII I-04: Industrial Robot operator (Yaskawa Arc welding)	CIIIT-08: Finite Element Analysis (MSC Nastran)		
Basics of industrial Robotics Verious annligation in industrias	Basics of Strength of Material Introduction to Coomparis Model & EE Model		
various application in industries Safaty for Pohot	Introduction to Geometric Model & FE Model Introduction to Finite Element Analysis (FEA)		
Product Description and Specifications: DOBOTS	 Introduction to Finite Element Analysis (FEA) Introduction to MSC NASTRAN and PATRAN 		
Robot Transport and Installation	Linear static structural analysis		
 Operation of ROBOT: ROBOT Programming 	 Modal Analysis (Free-Free Run) 		
Basic & logical command used in program	Buckling Analysis		
Robot practical Welding program	Non-Linear Static Analysis		
Maintenance of Robots in Industry	Material Geometry and Contact Non-Linearity		
	indication of the condition billion by		

3D-PRINTER

Make: Ultimaker 3 Extended, dual extrusion with open filament system. Technology: Fused Filament Fabrication Print head: Dual nozzle, Nozzle replacement: Easily swappable print cores Filament diameter: 2.85 mm Step accuracy X, Y, Z: 12.5, 12.5, 2.5 micron Print head travel speed: 30 - 300 mm/s Material flow speed: 0.40: up to 16mm³/s Build plate: Heated glass bed Nozzle diameter: 0.4mm Nozzle temperature: 180 - 280 °C Build plate temperature: 20 - 100 °C Nozzle heat up time: <2 min **Build plate heat up time:** $<4 \min(20 -> 60 \text{ °C})$ Average operation noise: 50 dBA Nozzle replacement: Easily swappable printcores Filament storage: Open, reel holder incl guide for 2 spools of 750g Filament Detection: NFC automatic material detection Connectivity: Wifi, ethernet, stand alone via USB-drive Bed levelling: Active leveling Camera: Yes **Printer size:** 342 x 380 x 489 mm **Build volume:** 215 x 215 x 300 mm (left or right nozzle) 197 x 215 x 300 mm (dual extrusion) Supported materials: PLA, Tough PLA, Nylon, ABS, CPE, CPE+, PC, TPU 95A, PP, PVA, Breakaway Nozzle temperature: 180 °C to 280 °C Build plate: 20 to 100 °C heated glass build plate with active leveling Connectivity: Wi-Fi, LAN, or USB port

3-D SCANNER

Technical Specifications:

Make: EinScan SE

Scan Mode Mode of Alignment Single Shot Accuracy Minimum Scan Volume : Maximum Scan Volume : **Range of Single Capture** : **Scan Speed Point Distance** Texture File Format **Camera Resolution** Light Source **Stand-off Distance**

Auto Scan Turntable; Manual : <0.1 mm $30 \times 30 \times 30$ mm 200×200×200 mm 200×150 mm <8 s : : $0.17 \text{ mm} \sim 0.2 \text{ mm}$: Yes OBJ, STL, ASC, PLY : 1.3 Mega Pixels : White Light $290 \sim 480 \text{ mm}$

:

:

ARC WELDING ROBOT

MAKE: YASKAWA AR-1440

12 kg payload supports a wide variety of motorized torches and sensors.

Slim, fast, six-axis AR1440 welding robot achieves unrivaled welding performance and productivity.

Slim profile design allows close proximity placement of robots for high-density work cells.

YASKAWA

Symmetric wrist profile, with ample range, provides equal torch access to both sides of part.

04

50 mm thru-hole for torch cabling, hoses and sensor wires reduces cable interference and wear.

TECHNICAL SPECIFICATIONS

Item	Unit	AR1440
Controlled Axes		6
Maximum payload	kg	12
Repeatability	mm	0.02
Horizontal reach	mm	1440
Vertical reach	mm	2511
Weight	kg	150
Internal user I/O cable		17 conductors w/ ground
Internal user air line		(1) 3/8" connec- tion
Power requirements		380-480 VAC

Contoured arm allows easy access to parts in tight spots and avoids potential interference with fixtures.

High allowable moment and inertia ratings provide wrist rigidity and consistent weld quality.

Minimal U-axis cable protrusion and S-axis internal cable management prolongs cable life and maximizes part access

5

Manufacturing Execution System (MES)

SPECIFICATIONS

Conveyor (12m) with PLC
Emergency Stop & Authorization Box
Allen Bradley PLC of Compact Logic L16-ER
Buonfiglio Motor and Cables,
PLC integration Rittal IP-65 panels-AB-L16_ER
Buffer modules
3 Tier lamps
Hooter and Andon scheme
Pick to light sensor integration
Pick to light Racks with bin system 6 Nodes
Pick to Light sensor:
K50APFF100GREQ-50 E series Banner K50
Pick to Light cables Banner MQDC1-506
Tower Light Banner TL50GYRA
Station Tube lights and PC Stands
Mechanical Components for Assembly
Factory Magix software by TTL
Desktop-Label Printer Zebra GT800:
Resolution 203 dpi/8 dots per mm, Memory 8
MB Flash, 8 MB SDRAM, Print Speed 5"/127
mm per second, and Zebra Solutions Software.
Warranty - HP 5/5/5 Warranty SING

Pick N Place ROBOT (BRABO)

SPECIFICATIONS

Payload	10 kg	
Max. Reach	750 mm	
Controller Axes	5	
Robot Arm-Wt.	95 kg	
Structure	Articulated Arm	
	Axis 1: ± 1800	
	Axis 2: ± 1300	
Axis Ranges	Axis 3: ± 1500	
	Axis 4: ± 1800	
	Axis 5: ± 3600	
Max. Speed (A1,	A1: 1100/s	
A2, A3, A4 & A5)		
Position Repeatability	± 0.2 mm	
Acoustic Noise	< 70 dB	
Sound Sensor	Yes	
Touch Sensor	Yes	
Light Sensor	Yes	
Operating Temp	0 – 50 0C	
Mounting	Floor	

VERTICAL MACHINING **CENTER (VMC)**

SPECIFICATIONS

TRAVELS	UNITS	430V
Х	mm	400
Y	mm	300
Z	mm	400
Dist . from spindle face to table top	mm	125-525
TABLE		
Table size	mm	650 x300
Max. load on table	mm	250
Table height from floor	mm	840
SPINDLE		BT - 40
Tool shank type	rpm	60 -6000
Spindle Seed Std.	kW	5.5 / 3.7
Spindle Power Std.		
FEED		
Cutting Feed	mm/min	1 - 10000
Rapid Traverse	m/min	36/36/36
AUTOMATIC TOOL CHANGER		
No. of. Tools		20
Tool Dia . Max.	mm	80 / 100
Tool Weight Max.	Kg	8
Tool Length Max.	mm	250
Tool Change System		Twin Arm
Chip To Chip Time	Sec.	3.3 / 4
ACCURACY		
Positioning accuracy	mm	0.010
Repeatability	mm	+ 0.0003
CONTROL SYSTEM		
Fanuc	Std.	0IMF
INSTALLATION DATA		
Machine Width	mm	1600
Machine Depth	mm	2000
Machine Height	mm	2350
Machine Weight -Net	kg	2200

SPECIFICATIONS

TRAVELS	UNIT
Length	2300 mm
Width	1600 mm
Height	2100 mm
Chuck Size	165 mm
Maximum Turning Diameter	235 mm
Swing Over Cross Slides	160 mm
Swing Over Way Cover	410 mm
Maximum Speed	6000 RPM
FANUC Controller	
Tool Type	BTP 80
No. of Tool Stations	8

MAX TURN CNC **PLUS+TURNING CENTRE**

MINIATURE INDUSTRIAL PRODUCTION SYSTEM (MIPS)

MIPS enable the trainees & trainers to acquire thorough knowledge in field of Robotics & Automation starting from basic theoretical concepts to advanced applications.

A combination of all the technologies used in the lab, the MIPS is a complete platform to learn about industrial automation.

It includes a combination of various sensors, motors, pneumatic components, linear actuators, microcontrollers & PLC, etc. to build a miniature manufacturing unit that performs a specific task.

MIPS consists of total 11 modules i.e. Stacking Magazine Module, Linear Transfer Module, Lifting Module, Slide Module, Indexing Module, Drilling Module, Sensing Module, Robotic Manipulator Module, Conveyor Module, Separating Module, Storage Module.

Customized IDE Board: IOTIF

Integrated Development Environments: Arduino Nano Raspberry Pi 4

Added on board Support ESP-01 (Wi-Fi) HC-05 (Blue Tooth)

Additional sensors:

- Turbidity Torque,
- Acceleration Gyroscopic
- Sound Touch Light
- Moisture Humidity
- Turbidity Heart Beat,
- Water flow Water level Vibration
- Body Temperature Oxygen level

INTERNET OF THINGS

Key Enablers:

- High End Industrial Workstations
- ThingWorx Industrial Connectivity
- Internet of Things Hardware
- Sensors and other accessories
- Data Analytics Tools
- Electric and Electronic components
- Industrial Best Practices

Career Opportunities:

- Automotive Industries
- Aerospace Engineering
- Construction Equipment's
- Locomotive
- Industrial Heavy Machinery
- Oil and Gas
- Consumer Goods
- Manufacturing Industries
- IT Industry
- Electricals and Electronics

INDUSTRIAL AUTOMATION

OBJECTIVES: • Provide quality education in industrial automation • Exploring Sensors-actuators, PLC, HMI and SCADA • Develop effective mechanisms for transfer of technology for enhanced and sustainable production leading to improved livelihoods.

COURSE CONTENTS: • Introduction to Industrial revolutions and process control • Fundamental Components of Automation

• IO modules interfacing Techniques • Electro Hydraulic and Electro Pneumatic systems • SIEMENS SIMATIC S7 controllers

PLC Programming concepts
 Analog operations and converters
 PLC Communication
 Fundamental of SCADA and HMI

● SCADA and HMI development ● Lab sessions on TIA portal, Siemens PLC and HMI ● PID Controller ● Miniature Industrial Production system ● Introduction to IoT and IIoT ● Mini project

Linear Motion setup

SOLAR ENERGY INSTALLATIONS AND TECHNOLOGY DEMONSTRATION ON CAMPUS

1. ROOFTOP SOLAR PHOTOVOLTAIC POWER PLANT

A total 460 kwp grid connected rooftop solar photovoltaic plant has been installed on campus. The solar plant consists of a total 1505 solar PV modules of TATA Power Solar and we are having different capacities like 260Wp and 320Wp.

2. CONCENTRATED SOLAR THERMAL (CST) PLANT

The research facilities are being used by undergraduate, postgraduate, and doctoral research students on campus. Some of the current research efforts include using CST to generate pressurized hot water for cooking and other applications, using collected heat in vapour absorption refrigeration (VAR) system, development of efficient thermal storage units and more.

Concentrated Solar thermal (CST) Facility at RCOEM Nagpur

TESTING AND CALIBRATION FACILITIES

RCOEM is providing electrical calibration services for almost all, electrical, electronic, a test measuring instruments like DMMS, Panel meters, Oscilloscope, LCR meters, Power meters, Micro Ohmmeters, Function generators, Signal generators, Thermocouples, RTDs, Data logger etc.

Calibration Facilities :

Fluke Multiproduct Calibrator with 300 MHz Oscilloscope (Model: 5502A-3), Fluke 6.5 Digit Digital Multimeter (Model: 8846A). Fluke 50 Turn Current Coil (Model: 5500A/Coil).

Standards and Instruments Used :

Fluke Multiproduct Calibrator with 300 MHz Oscilloscope (Model: 5502A-3) as a source, Fluke 6.5 Digit Digital Multimeter (Model: 8846A). Make: Fluke 50 Turn Current Coil (Model: 5500A/Coil).

Source Parameters :

DC Current, AC Current, DC Voltage, AC Voltage, Resistance, Capacitance, Frequency, Power Factor, Power at various power factors.

Instruments Which Can Be Calibrated :

Multimeter up to 6 ¹/₂ digit, Clamp meter, LCR Meter, AC/DC Voltmeter, AC/DC Ammeter, Frequency Meter, Ohms Meter, Electronic thermometers, Chart recorders, Oscilloscope recorders, XY recorders, Data loggers.

Measurement Parameters :

AC/DC Voltage, AC/DC High Voltages, DC Current, AC Current (at 5 Hz TO 30 kHz Frequency), Resistance, Capacitance, Frequency.

For Testing & Calibration Services Contact -Dr. Rajesh Raut - 98234 04432

Summary Specifications of Fluke 5502A-3 Multiproduct Calibrator :

Function and Range			
1	DC Voltage	0 to ± 1020 V	
2	DC Current	$0 \text{ to } \pm 20.5 \text{ A}$	
3	AC Voltage	1mV to 1020 V	
	-	10Hz to 500kHz	
4	Volt/Hertz	1000 V @ 10kHz/ 330V	
		@ 100kHz	
5	AC Current	29 uA to 20.5A	
		10Hz to 30 kHz	
6	Resistance		
7	Capacitance	220 pF to 100 mF	
8	Thermocouple	B,C,E,J,K,L,N,R,S,T,U	
	(Source /Measure)	10 uV/oC and 1 mV/oC	
9	RTD		
	(Source temperature)	Pt 385-100 Ω,	
		Pt 3926-100 Ω,	
		Pt 3916-100 Ω,	
		Pt 385-200 Ω,	
		Pt 385-100 Ω,	
		Pt 385-1000 Ω,	
		Pt Ni 385-120 Ω(Ni120),	
		Cu (427- 10 Ω)	
10	Waveform	Sine, Square, Triangle,	
		truncated sine.	
11	Frequency uncertainty	< 25 ppm	
12	Oscilloscope calibration	Calibrate oscilloscopes upto	
		300 MHz Band width with	
		variable amplitude/ frequency	
		/ edge etc	

INTERACT WITH US

RCOEM-TATA-CIIIT Ramdeo Tekdi, Gittikhadan, Katol Road, Nagpur - 440 013 (M.S.) (India) http://www.rknec.edu/RCOEM-TATA-CIIIT.aspx# Email: ciiit@rknec.edu Course registration link: https://forms.gle/GEvLBpRiyAdozgDP7

Dr. Y. M. Sonkhaskar	Mr. Mayur Patle	Miss. Nikita Satfale	Mr. Shrikant Wankhede
9423429641	7498689548	8459707309	9168067277