

Shri Ramdeobaba College of Engineering and
Management, Nagpur (MS)

(An Autonomous Institution Permanently affiliated to Rashtrasant Tukadoji Maharaj
Nagpur University)

An ISO 9001:2015 Certified Institution. NAAC Certified 'A' Grade

Department of Electrical Engineering

Laboratory Manual

Microcontroller Laboratory

EEP 353

(V Semester Electrical)

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 1 of 61

Index

Sr.No Description Page No

1. Program Outcomes (PO) and Program Specific Outcomes 2

2. Course Details:

Course Objective, Course Outcomes(CO)

3

3. Mapping of CO with PO and PSO 4

4. Laboratory Assignments Index 5-6

5. Rubrics 7

6. Laboratory Assignments Details 8-27

7. Microcontroller board Manual :

Chapter 1 to Chapter 15

28-54

8. Using AVR Studio for C/Assembly programming 55-60

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 2 of 61

Program Outcomes (UG)

 PO1. Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals to the solution of engineering problems.

 PO2. Problem analysis: Identify, formulate, review literature, and analyze
complex engineering problems using first principles of mathematics, natural
sciences, and engineering sciences.

 PO3. Design/development of solutions: Design solutions for complex
engineering problems and design system components or processes that meet the
specified needs with appropriate consideration for the public safety, societal and
environmental considerations.

 PO4. Conduct problem investigations: Use research-based knowledge
including experimentation, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

 PO5. Modern tool usage: Select, and apply appropriate techniques, resources,
and modern engineering and IT tools for analyzing the engineering activities with
an understanding of the limitations.

 PO6. The engineer, industry and society: Apply contextual knowledge to
assess industrial, societal and safety related issues and understand consequent
relevance to the professional engineering practice.

 PO7. Environment and sustainability: Understand the impact of the
professional engineering solutions in societal and environmental contexts, and
demonstrate the knowledge of, and need for sustainable development.

 PO8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

 PO9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

 PO10. Communication: Communicate effectively on complex engineering
activities such as, being able to understand and write effective reports, make
effective presentations, and give and receive clear instructions.

 PO11. Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply these to
one’s own work, as a member and leader in a team in multidisciplinary
environments.

 PO12. Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context of
technological change.

Programme Specific Outcomes

 PSO1. Analyze and design electrical networks, machines, control systems, power
systems, power converters and evaluate the performance.

 PSO2. Understand and develop electrical systems considering energy efficiency,
power scenario, environmental issues and industry applications.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 3 of 61

Course Details

Course Name: Microcontroller Laboratory

Course Code : EEP353

Lab Hours : Two /Week

Credits : 0ne

Prerequisite: Digital Electronics,

Curse Objective:

The objectives of this laboratory course are to prepare students for Microcontroller

programming, introduce the open source/proprietary development environment and

make them acquainted with microcontroller development board.

Course Outcomes:

At the completion of this course, students will be able to:

CO1 Use open source or proprietary development environment and microcontroller
development board for Microcontroller programming.
CO2 Implement control algorithm using suitable programming language.
CO3 Set up the circuit on microcontroller development board for testing of program.
CO4 Debug the program to make it working.
CO5 Design a small application based on microcontroller

Evaluation Scheme:

Internal Evaluation : 25 Marks External Evaluation: 25 Marks

Continuous evaluation: 15
 Program writing
 Program execution

 Timely submission
Journal writing: 04
Viva voce : 06

Program writing : 8M
Program execution :7M
Viva Voce : 10M

Ref Books/Resources:
1. Laboratory manual
2. Open source development tool guide
3. Product Datasheet

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 4 of 61

CO and PO Mapping

Course Outcomes PO and PSOs

At the completion of this
course, students will be
able to:

PO
1

PO
2

PO
3

PO
4

PO
5

PO
6

PO
7

PO
8

PO
9

PO
10

PO
11

PO
12

PSO
1

PSO
2

E
n

g
in

e
e

ri
n

g
 k

n
o

w
le

d
g

e

P
ro

b
le

m
 a

n
a

ly
s
is

D
e
s
ig

n
/
d

e
v
e

lo
p

m
e
n

t
o

f

s
o

lu
ti

o
n

s

C
o

n
d

u
c
t

p
ro

b
le

m

in
v
e
s
ti

g
a

ti
o

n
s

M
o

d
e

rn
 t

o
o

l
u

s
a

g
e

T
h

e
 e

n
g

in
e

e
r,

 i
n

d
u

s
tr

y

a
n

d
 s

o
c
ie

ty

E
n

v
ir

o
n

m
e

n
t

a
n

d

s
u

s
ta

in
a

b
il

it
y

E
th

ic
s

In
d

iv
id

u
a

l
a
n

d
 t

e
a

m

w
o

rk

C
o

m
m

u
n

ic
a

ti
o

n

P
ro

je
c
t

m
a
n

a
g

e
m

e
n

t

a
n

d
 f

in
a

n
c
e

L
if

e
-l

o
n

g
 l
e

a
rn

in
g

 L
if

e
-

lo
n

g
 l

e
a

rn
in

g

A
n

a
ly

z
e

 a
n

d
 d

e
s
ig

n

A
n

a
ly

z
e

 a
n

d
 d

e
s
ig

n

U
n

d
e

rs
ta

n
d

 a
n

d
 d

e
v
e

lo
p

CO1 Use open source or
proprietary development
environment and
microcontroller
development board for
Microcontroller
programming.

S

CO2 Implement control
algorithm using suitable
programming language.

S

S

CO3 Set up the circuit on
microcontroller
development board for
testing of program.

 S

CO4 Debug the program
to make it working.

 S S

CO5 Design a small
application based on
microcontroller

 S M S

S: Strong ; M: Medium, W: Weak

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 5 of 61

Microcontroller Laboratory Assignments

Sr.
No

Assignment Details Concept
Covered

1. LED
Interfacing

This Assignment demonstrates simple LEDs Blinking
operation.
The LEDs will continuously toggle in periodic interval
thus creating Blinking effect

I/O PORTs,
Delay function,

2. LED and
Switches
interfacing

This assignment demonstrates LED and Switch
interfacing operation.
The program will continuously scan the keys and
respective LEDs will turn on when a switch is pressed,

I/O PORTs and
LED and
Switches
interfacing

3. Seven
Segment
Display(SSD)
interfacing

This assignment demonstrates Multiplexed Seven
Segment Display interfacing using BCD to 7segment
Decoder 74LS47.
BCD Inputs are connected to lower nibble of PORT
and 2 Selects pins are used for selecting Seven
Segment Display.
A counter from 0 to 99 will run on two seven segment
displays

Multiplexed
Seven Segment
Display(SSD)
interfacing

4. RELAY and
BUZZER
interfacing

This assignment demonstrates simple RELAY and
BUZZER ON/OFF operation.
Two switches are used to ON and OFF the RELAY and
BUZZER respectively.

Electromechanic
al relay control
and Buzzer
Indication.

5. LCD 16x2
interfacing

This assignment demonstrates the 16x2 LCD
operation in 4 bit mode.
Data and commands will be given to LCD in 4 bit
mode and text will be displayed in both the lines.

LCD Interfacing

6 Analog
Sensor
interfacing
using ADC
with LCD
16x2

This Assignment demonstrates ADC 10 bit mode
operation with LCD 16x2 in 4 bit mode. A
potentiometer output is connected to pin ADC2(PA2)
of ADC Port whose analog value will be converted into
digital value and will be displayed on LCD
 Rotate the POT with proper tool to see
changes when output voltage of pot changed

ADC Interface

7 Timer
Interfacing

This Assignment demonstrates the Timer initialization
in different modes and use of Timer for generation of
PWM signals

Timer interface
for delay
generation
Timer interface
for PWM signal
generation

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 6 of 61

8 Serial
Communicati
on with PC
using UART

This Assignment demonstrates simple Serial
communication operation with PC. Microcontroller will
implement a serial communication protocol which is
already implemented in PC. Controller will read
a input from PC and in response send some
characters to PC in order to check the communication
is successfully established.
Open any terminal software and type in any key you
should get "OK" as a response from microcontroller.

Serial
communication
protocols

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 7 of 61

Rubrics

Evaluation
Parameter

Rubric 1

Average

(20 to 50% marks)

Rubric 2

Good

(50 to 80% marks)

Rubric 3

Very Good

(80 to 100% marks)

Continuous
evaluation

Program
writing:
6 Marks

Unable to implement

program logic and

implement using

programming

language

Can implement the

control logic but

Able to follow the

experimental

procedures and

mathematical

calculations.

But unable to

evaluate and interpret

properly.

Able to follow

experimental

procedures and

mathematical

calculations. Also able

to present and interpret

properly and co-relate

the practical with the

theory.

Program
execution
6 Marks

Unable to use the open

source IDE and develop

the program s

Able to use the IDE but lags

in developing use it

effectively.

Able to select use the open

source IDE and develop and

simulate the program correctly.

Timely
submission
3 Marks

Completes the task

taking additional time

Not punctual in class

Completes the task

taking additional

time,

Punctual in class

Complete the task in time

Punctual in class

Journal writing : 4 marks Report writing is not

systematic, bad

presentation

Systematic report,

Lacks good

presentation

Systematic report writing

with good presentation

Viva voce : 6 Marks Not communicate

properly the technical

terms related with

course

Majority of wrong

answers

Not communicate

properly the technical

terms related with

course

Majority of right

answers

Communicate properly

the technical terms

related with course

Majority of right

answers

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 8 of 61

Laboratory Assignments Details

Assignment 1: LED interfacing

 Platform: AVR ATMEGA 32 Development Board
 Micro controller: Atmega32

Concept Covered: I/O PORTs and LED

Description: This experiment demonstrates simple LEDs Blinking operation. The LEDs will
continuously toggle every sec thus creating Blinking effect.

Hardware Setup: Output LEDs: PORTB

Connect the 8 pin 1 to 1 connector cable between PORTB and LEDs ARRAY Header in one to one
pattern.

#define F_CPU 16000000

#include <avr/io.h> // inclusion for defination of Registers
#include <util/delay.h> // inclusion for delay functions

int main() { // Starting point of programs
 DDRB = 0xff; // make pins of PORTB as Output pins

 while(1) // indefinite loop
 {
 PORTB ^= 0xff; // EX-OR the bits of PORTB in order to create the
toggle effect
 _delay_ms(1000); // call function give delay of 1000 mili second ie. 1 sec
 }
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 9 of 61

Assignment 2: LED and SWITCHS interfacing

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: I/O PORTs and LED and SWITCHS interfacing

 Description: This experiment demonstrates simple LED and SWITCHS interfacing operation.
4 LEDs are connected to lower nibble(PB0,PB1,PB2,PB3) of PORTB and 4 Switches are connected
to upper nibble nibble(PB4,PB5,PB6,PB7) of PORTB. The respective LEDs will turn on when a
switch is pressed

Hardware Setup:
 Output LEDs: PORTB(PB0,PB1,PB2,PB3)
 Input Switches: PORTB(PB4,PB5,PB6,PB7)

Connect the 4 pin 1 to 1 connector cable between PORTB and LEDs ARRAY Header in one to one
pattern.
 PB0--- LED1
 PB1--- LED2
 PB2--- LED3
 PB3--- LED4
Connect the 4 pin 1 to 1 connector cable between PORTB and Switches Header in one to one
pattern.
 PB4--- SW1
 PB5--- SW2
 PB6--- SW3
 PB7--- SW4

*define F_CPU 16000000

*include <avr/io.h> // inclusion for definition Registers
*include <util/delay.h> // inclusion for delay functions

int main() { // Starting point of programs
 DDRB = 0x0f; // Make pins of PORTB(PB0,PB1,PB2,PB3) as Output
Pins and PORTB(PB4,PB5,PB6,PB7) as Input Pins
 PORTB = 0xf0; // Keep LEDs Off and Enable pull-ups for Switches

 while(1) // indefinite loop
 {
 if(bit_is_clear(PINB,PB4)) {// Scan PB4 for Switch 1
 PORTB |= 0x01; // If Pressed turn ON LED1
 }
 else if(bit_is_clear(PINB,PB5)) {// Scan PB5 for Switch 2
 PORTB |= 0x02; // If Pressed turn ON LED2
 }

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 10 of 61

 else if(bit_is_clear(PINB,PB6)) {// Scan PB6 for Switch 3
 PORTB |= 0x04; // If Pressed turn ON LED3
 }
 else if(bit_is_clear(PINB,PB7)) { // Scan PB7 for Switch 4
 PORTB |= 0x08; // If Pressed turn ON LED4
 }
 else {
 PORTB = 0xf0;// If no Switch is pressed keep LEDS OFF
 }
 }
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 11 of 61

Assignment 3: Seven Segment Display (SSD) interfacing

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: Multiplexed Seven Segment Display(SSD) interfacing

Description: This experiment demonstrates Multiplexed Seven Segment Display interfacing
using BCD to 7segment Decoder 74LS47. BCD Inputs are connected to lower nibble of
PORTD(PD0,PD1,PD2,PD3) and
2 Selects pins for selecting Seven Segment Display are connected to PD4 and PD5 of PORTD. A
counter from 0 to 99 will run on two seven segment displays

 Hardware Setup:
 BCD Inputs: PORTD(PD0,PD1,PD2,PD3)
 Select Pins: PORTD(PD4,PD5)

Connect the 6 pin 1 to 1 connector cable between PORTD and Seven Segment Displays Header
in one to one pattern.
 PD0--- D0
 PD1--- D1
 PD2--- D2
 PD3--- D3
 PD4--- SSD1
 PD5--- SSD2
Refer board manual for more detailed description.

 Note: Please check the connections properly before performing any experiments.

#define F_CPU 16000000

#include <avr/io.h> // inclusion for defination Registers
#include <util/delay.h> // inclusion for delay functions
#include <compat/deprecated.h> // inclusion for bit wise operations(sbi and cbi)

#define SSD_DDR DDRD // Macros for SSD data direction register
#define SSD_PORT PORTD // Macros for SSD port register
#define SSD1 PD4 // Macros for SSD1 select pin
#define SSD2 PD5 // Macros for SSD2 select pin

int main() { // Starting point of programs

 SSD_DDR |= 0x0F; // Make Port pins as Output
 PORTD &= ~(0X0F); // Clear pins initially

 sbi(SSD_DDR,SSD1); // Set pin to select SSD1 as output
 sbi(SSD_DDR,SSD2); // Set pin to select SSD2 as output

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 12 of 61

 sbi(SSD_PORT,SSD1); // Keep both SSDs OFF initially
 sbi(SSD_PORT,SSD2); // SSD will be selected when Data is to be
written

 while(1) // indefinite loop
 {
 for(int i = 0;i < 99;i++) { // Set a for loop to count from 0 to 99

 for(int j = 0;j < 25;j++) { // Set a for loop from 0 to 25 this done to
hold counter value for sometime

 cbi(SSD_PORT,SSD1); // Select SSD1 to turn On
 sbi(SSD_PORT,SSD2); // SSD2 will be OFF
 SSD_PORT = (SSD_PORT & 0xf0) | (i/10);// extract Unit's digit and Send
Value on port to display on SSD1
 _delay_ms(5); // provide a small delay for
digit to visible

 sbi(SSD_PORT,SSD1); // SSD1 will be OFF
 cbi(SSD_PORT,SSD2); // Select SSD2 to turn On
 SSD_PORT = (SSD_PORT & 0xf0) | (i%10);// extract ten's digit and Send
Value on port to display on SSD2
 _delay_ms(5); // provide a small delay for
digit to visible

 }
 }
 }
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 13 of 61

Assignment 4: RELAY and BUZZER interfacing

Platform: AVR ATMEGA-32 Development Board
Microcontroller: Atmega32

Concept Covered: RELAY and BUZZER interfacing

Description: This experiment demonstrates simple RELAY and BUZZER ON/OFF operation.
RELAY and BUZZER are connected to PC0,PC1 of PORTC and 2 Switches are connected to
PD0,PD1 of PORTD. The respective Device will turn on when a switch is pressed else OFF
condition.

Hardware Setup:
 RELAYS and BUZZER: PORTC(PC0,PC1)
 Input Switches: PORTD(PD0,PD1)

Connect the 3 pin 1 to 1 connector cable between PORTC and RELAY and BUZZER Header
in one to one pattern.
 PC0--- RELAY1
 PC1--- BUZZER
Connect the 3 pin 1 to 1 connector cable between PORTD and Switches Header in one to one
pattern.
 PD0--- SW1
 PD1--- SW2

 Refer board manual for more detailed description.
 Note: Please check the connections properly before performing any experiments.

#define F_CPU 16000000

#include <avr/io.h> // inclusion for definition of Registers
#include <util/delay.h> // inclusion for delay functions
#include <compat/deprecated.h> // inclusion for bitwise functions like sbi and cbi

#define SW_DDR DDRD // Definition of port for switches
#define SW_PIN PIND
#define SW_PORT PORTD
#define SW1 PD0
#define SW2 PD1

#define DEVICE_DDR DDRC // Definition of port for relays and buzzer
#define DEVICE_PORT PORTC
#define RELAY PC0
#define BUZZER PC1

int main() { // Starting point of program

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 14 of 61

 cbi(SW_DDR,SW1); // Declare pins as input pins for switches
 cbi(SW_DDR,SW2);

 sbi(SW_PORT,SW1); // Enable pull ups
 sbi(SW_PORT,SW2);

 sbi(DEVICE_DDR,RELAY); // Declare pins as Output pins for relays and buzzer
 sbi(DEVICE_DDR,BUZZER);

 cbi(DEVICE_PORT,RELAY); // Keeping all devices OFF initially
 cbi(DEVICE_PORT,BUZZER);

 while(1) // indefinite loop
 {
 if(bit_is_clear(SW_PIN,SW1)) { //check if switch1 is pressed
 sbi(DEVICE_PORT,RELAY); // if yes turn relay1 ON
 }
 else if(bit_is_clear(SW_PIN,SW2)) { //check if switch2 is pressed
 sbi(DEVICE_PORT,BUZZER); // if yes turn relay2 ON
 }
 else {
 cbi(DEVICE_PORT,RELAY);// Keep them OFF
 cbi(DEVICE_PORT,BUZZER);
 }
 }
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 15 of 61

Assignment 5: LCD 16x2 interfacing

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: Character LCD 16x2 in 4 bit mode

Description: This experiment demonstrates simple LCD 16x2 operation in 4 bit mode. Data will
feed to LCD in 4 bit mode and text will be displayed in both the line

Hardware Setup: LCD port: PORTC

Connect the 6 pin 1 to 1 connector cable between PORTC and LCD Header in one to one pattern.
 PC2---- RS
 PC3---- EN
 PC4---- D4
 PC5---- D5
 PC6---- D6
 PC7---- D7

R/W of LCD is grounded by connecting the jumper(R/W to GND) make sure it is connected
unless one use R/W Pin in Program

Refer board manual for more detailed description.

 Note: Please check the connections properly before performing any experiments.

#define F_CPU 16000000

#include <avr/io.h> // inclusion for defination Registers
#include <util/delay.h> // inclusion for delay functions

#define LCD_DDR DDRC // Macro to define LCD Data Port
#define LCD_PORT PORTC

#define LCD_CTRL_DDR DDRC // Macro to define LCD Control pin Port
#define LCD_CTRL_PORT PORTC
#define RS PC2
#define EN PC3

#define RS_HIGH() LCD_CTRL_PORT |= (1 << RS) // RS High
#define RS_LOW() LCD_CTRL_PORT &= ~(1 << RS) // RS Low
#define EN_HIGH() LCD_CTRL_PORT |= (1 << EN) // EN High
#define EN_LOW() LCD_CTRL_PORT &= ~(1 << EN) // EN Low

/* Functions prototypes */
void LCD_CMD(unsigned char cmd);
void LCD_DATA(unsigned char data);
void LCD_PULSE(void);

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 16 of 61

int main() { // Starting point of programs

 char str[] = "Hello LCD 16x2"; // String to display on LCD
 LCD_DDR |= 0xF0; // Make pins to be used as Outputs
 LCD_CTRL_DDR |= 1 << RS | 1 << EN; // Make pins to be used as Outputs

 // LCD Reset Squence
 LCD_CMD(0x30);_delay_ms(1);
 LCD_CMD(0x30);_delay_ms(1);
 LCD_CMD(0x30);_delay_ms(1);

 LCD_CMD(0x02); // Command LCD for 4 Bit operations
 LCD_CMD(0x28); // to set lcd in 4 bit,2 lines,font 5x7
 LCD_CMD(0x0C); // to set display on,cuRSor off ,blinking off
 LCD_CMD(0x06); // cuRSor incremENt, no display shift
 LCD_CMD(0x01); // to clear lcd

 LCD_CMD(0x80+4); // Select Line1 and 4th coloumn
 LCD_DATA('*'); // Send Characters to display on LCD
 LCD_DATA('*');
 LCD_DATA('A');
 LCD_DATA('V');
 LCD_DATA('R');
 LCD_DATA('*');
 LCD_DATA('*');

 LCD_CMD(0xC0+1); // Select Line2 and 1st coloumn

 int i = 0;

 while(str[i] != 0) {
 LCD_DATA(str[i++]); // to Send String to be Displayed
 }

 while(1); // Halt
}

void LCD_CMD(unsigned char cmd)
{
 LCD_PORT = ((LCD_PORT & 0x0f) | cmd); // put command on lcd port
 RS_LOW(); // RS low
 LCD_PULSE();
 LCD_PORT = ((LCD_PORT & 0x0f) | (cmd<<4)); // put command on lcd port
 RS_LOW(); // RS low
 LCD_PULSE();
 _delay_ms(5);

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 17 of 61

}
void LCD_DATA(unsigned char data)
{
 LCD_PORT = ((LCD_PORT & 0x0f) | data); // put data on lcd port
 RS_HIGH(); // RS high
 LCD_PULSE();
 LCD_PORT = ((LCD_PORT & 0x0f) | (data<<4)); // put data on lcd port
 RS_HIGH(); // RS high
 LCD_PULSE();
 _delay_ms(5);
}
void LCD_PULSE(void)
{
 EN_HIGH(); // EN high
 _delay_us(100); // give some delay
 EN_LOW(); // EN low
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 18 of 61

Assignment 6 : Analog Sensor interfacing using ADC with LCD 16x2

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: ADC in 10 bit resolution mode, LCD 16x2 in 4 bit mode

Description: This experiment demonstrates simple ADC 10 bit mode operation with LCD 16x2 in
4 bit mode. A potentiometer output is connected to pin ADC2 (PA2) of ADC Port whose analog
value will be converted into digital value and will be displayed on LCD. Rotate the POT with proper
tool to see changes when output voltage of pot changed

Hardware Setup: LCD port: PORTC
 POT : ADC2 ie.PA2 of PORTA

Connect the 6 pin 1 to 1 connector cable between PORTC and LCD Header in one to one pattern.
 PC2---- RS
 PC3---- EN
 PC4---- D4
 PC5---- D5
 PC6---- D6
 PC7---- D7

R/W of LCD is grounded by connecting the jumper(R/W to ground) make sure it is
connected unless one use R/W Pin in Program Connect the jumper POT---ADC2 on Development
Board in order to connect it to PA2 of ADC port

Refer board manual for more detailed description.

Note: Please check the connections properly before performing any experiments.

#define F_CPU 16000000

#include <avr/io.h> // inclusion for definition Registers
#include <util/delay.h> // inclusion for delay functions
#include <stdlib.h> // inclusion for library functions like iota

#define LCD_DDR DDRC // Macro to define LCD Data Port
#define LCD_PORT PORTC

#define LCD_CTRL_DDR DDRC // Macro to define LCD Control pin Port
#define LCD_CTRL_PORT PORTC
#define RS PC2
#define EN PC3

#define RS_HIGH() LCD_CTRL_PORT |= (1 << RS) // RS High
#define RS_LOW() LCD_CTRL_PORT &= ~(1 << RS) // RS Low
#define EN_HIGH() LCD_CTRL_PORT |= (1 << EN) // EN High

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 19 of 61

#define EN_LOW() LCD_CTRL_PORT &= ~(1 << EN) // EN Low

/* functions prototypes */
void LCD_CMD(unsigned char cmd);
void LCD_DATA(unsigned char data);
void LCD_PULSE(void);

int main() { // Starting point of program
int adc_result; // Variable to store the converted value
char str[] = "ADC Demo"; // Welcome message
LCD_DDR |= 0xF0; // Define pins connected to LCD as output pins
LCD_CTRL_DDR |= 1 << RS | 1 << EN; // LCD initialization

LCD_CMD(0x30);_delay_ms(1);
LCD_CMD(0x30);_delay_ms(1);
LCD_CMD(0x30);_delay_ms(1);

LCD_CMD(0x02); // Command LCD for 4 Bit operations
LCD_CMD(0x28); // to set lcd in 4 bit,2 lines,font 5x7
LCD_CMD(0x0C); // to set display on,cuRSor off ,blinking off
LCD_CMD(0x06); // cuRSor incremENt, no display shift
LCD_CMD(0x01); // to clear lcd

// ADC Initialize

ADMUX = (1 << REFS0); // reference voltage to internal 5v VCC and 10 bit resolution is selected

ADCSRA = (1 << ADPS2)|(1 << ADPS1)|(1 << ADPS0 | 1 << ADEN);// precaler of 128

 int i = 0;

 LCD_CMD(0x80+4);
 while(str[i] != 0) {
 LCD_DATA(str[i++]); // Display welcome message
 }

 while(1) { // indefinite loop

ADMUX|=2;// select Channel 2 ie ADC2(PA2)
ADCSRA |= (1 << ADSC);// Start conversion
while(!(ADCSRA & (1<<ADIF))); // Wait for conversion to complete
ADCSRA|=(1<<ADIF);// Clear the flag manually

adc_result = ADC; // copy the result in variable

itoa(adc_result,str,10); // Convert the integer value into string to display on LCD

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 20 of 61

int i = 0;
LCD_CMD(0xC0+6); // Select line2 and 6th coloumn
while(str[i] != 0) {
 LCD_DATA(str[i++]); // display the value
 }
 LCD_DATA(' ');
 // Now rotate the pot with proper tool to see the changes
 }
}

void LCD_CMD(unsigned char cmd)
{
 LCD_PORT = ((LCD_PORT & 0x0f) | cmd); // put command on lcd port
 RS_LOW(); // RS low
 LCD_PULSE();
 LCD_PORT = ((LCD_PORT & 0x0f) | (cmd<<4)); // put command on lcd port
 RS_LOW(); // RS low
 LCD_PULSE();
 _delay_ms(5);
}

void LCD_DATA(unsigned char data)
{
 LCD_PORT = ((LCD_PORT & 0x0f) | data); // put data on lcd port
 RS_HIGH(); // RS high
 LCD_PULSE();
 LCD_PORT = ((LCD_PORT & 0x0f) | (data<<4)); // put data on lcd port
 RS_HIGH(); // RS high
 LCD_PULSE();
 _delay_ms(5);
}

void LCD_PULSE(void)
{
 EN_HIGH(); // EN high
 _delay_us(100); // give some delay
 EN_LOW(); // EN low
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 21 of 61

Assignment 7 : Serial Communication with PC using UART

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: Serial communication UART

Description: This experiment demonstrates simple Serial communication operation with PC.
Microcontroller will implement a serial communication protocol which is already implemented in
PC. Controller will read a input from PC and in response send some characters to PC in order to
check the communication is successfully established .Open any terminal software and type in any
key you should get "OK" as a response from microcontroller.

Hardware Setup:

UART: Connect RXD and TXD jumpers in order to connect microcontroller with RS232
Communication Setup connect the board with your PC with RS232 Cable a cables another end
should be connected to the COM port of PC

Refer board manual for more detailed description.
Note: Please check the connections properly before performing any experiments.
**/
#define F_CPU 16000000

#include <avr/io.h> // inclusion for defination of Registers
#include <util/delay.h> // inclusion for delay functions

#define USART_BAUDRATE 9600 // Define Baud Rate value
#define BAUD_PRESCALE (((F_CPU / (USART_BAUDRATE * 16UL))) - 1) // Formula to
Calculate UBRR values

char UART_ReceiveByte(void);
void UART_SendByte(char data);
void UART_SendString(char* str);

int main()
{
 char ch;

UCSRB |= (1 << RXEN) | (1 << TXEN); // Turn on the transmission and reception circuitry
UCSRC |= (1 << URSEL)|(1 << UCSZ1)|(1 << UCSZ0); // Use 8-bit character sizes

UBRRL = (uint8_t)BAUD_PRESCALE;// Load lower 8-bits of the baud rate value into the low byte of the UBRR register

UBRRH = (uint8_t)(BAUD_PRESCALE >> 8);
 // Load upper 8-bits of the baud rate value into the high byte of the UBRR register

 while(1) // indefinite loop

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 22 of 61

 {
 ch = UART_ReceiveByte(); // Read a input from PC
 UART_SendString("OK\r"); // Send "OK" to PC
 }
}

char UART_ReceiveByte(void)
{
 //Wait untill a data is available

 while(!(UCSRA & (1<<RXC)));

 //Now USART has got data from host
 //and is available is buffer

 return UDR;
}
void UART_SendByte(char data)
{
 //Wait until the transmitter is ready

 while(!(UCSRA & (1<<UDRE)));

 //Now write the data to USART buffer

 UDR=data;
}

void UART_SendString(char* str)
{
 while(*str != '\0')
 {
 UART_SendByte(*str++);
 }
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 23 of 61

Assignment 8 : Real Time Clock using DS1307 and LCD 16x2

Platform: AVR ATMEGA16-32 Development Board
Microcontroller: Atmega32

Concept Covered: TWI/I2C protocol, RTC , LCD 16x2

Description: This experiment demonstrates simple Digital Clock and Calendar Demo.
Microcontroller will implement a i2c- a two wire communication protocol which will communicate
with Real time clock IC DS1307 and collects the date and time information therby displaying it on
LCD 16x2.

Hardware Setup:
TWI/I2c Pins:
Connect PC0(SCL) and PC1(SDA) of PORTC from microcontroller to SCL and SDA header on Board

LCD Port: PORTC
Connect the 6 pin 1 to 1 connector cable between PORTC and LCD Header in one to one pattern.
 PC2---- RS
 PC3---- EN
 PC4---- D4
 PC5---- D5
 PC6---- D6
 PC7---- D7

R/W of LCD is grounded by connecting the jumper(R/W to GND) make sure it is connected unless
one use R/W Pin in Program

Refer board manual for more detailed description.
Note: Please check the connections properly before performing any experiments.

**/
#define F_CPU 16000000

#include <avr/io.h> // inclusion for defination Registers
#include <util/delay.h> // inclusion for delay functions
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "LCD4Bit.h" // include LCD Library to use LCD functions

#define ACK 1
#define N_ACK 0

/* functions prototypes */
void TWI_Init(void);
void TWI_SendStart(void);

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 24 of 61

void TWI_SendSlaveData(uint8_t data);
uint8_t TWI_ReadSlaveData(uint8_t last);
void TWI_SendStop(void);
void RTC_Init(void);
void RTCSetTimeDate(void);
void RTCGetTimeDate(void);
uint8_t BinaryToBcd(uint8_t x);
uint8_t BcdToBinary(uint8_t x);

// structure to hold values for time and date
struct TimenDate
{
 int sec;
 int min;
 int hour;
 int day;
 int date;
 int month;
 int year;
};

struct TimenDate td;

int main(void) { // Starting Point of Program

 char str[16];
 LCD_Init(); // Initialize LCD
 RTC_Init(); // Initialize DS1307

 /*td.date = 4;
 td.month = 8;
 td.year = 14;
 td.hour = 15;
 td.min = 26;
 td.sec = 0;
 RTCSetTimeDate();*/

 while(1)
 {
 RTCGetTimeDate(); // Read time and date from DS1307

 // Display them on LCD
 sprintf(str,"%02d/%02d/%02d",td.date,td.month,td.year);
 LCD_String(str,LINE1);

 sprintf(str,"%02d:%02d:%02d",td.hour,td.min,td.sec);
 LCD_String(str,LINE2);

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 25 of 61

 }
}

//###
/* Functions implementing i2c/TWI */

void TWI_Init(void)
{
 TWBR=10;
 TWSR &= ~(1<<TWPS1);
 TWSR &= ~(1<<TWPS0);
}

void TWI_SendStart(void)
{
 TWCR = 1 << TWINT | 1 << TWSTA | 1 << TWEN;
 while(!(TWCR & (1 << TWINT)));
}

void TWI_SendSlaveData(uint8_t data)
{
 TWDR = data;
 TWCR = 1 << TWINT | 1 << TWEN;
 while(!(TWCR & (1 << TWINT)));
}

uint8_t TWI_ReadSlaveData(uint8_t last)
{
 char ch;

 if(!last)
 {
 TWCR = 1 << TWINT | 1 << TWEN;
 }
 else
 {
 TWCR = 1 << TWINT | 1 << TWEN | 1 << TWEA;
 }

 while(!(TWCR & (1 << TWINT)));

 ch = TWDR;

 return ch;
}

void TWI_SendStop(void)
{

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 26 of 61

 TWCR = 1 << TWINT | 1 << TWSTO | 1 << TWEN;
 while(!(TWCR & (1<<TWSTO)));
}

//##
/* Functions to communicate with DS1307 */

void RTC_Init(void)
{
 TWI_Init();
}

void RTCSetTimeDate(void)
{
 TWI_SendStart();
 TWI_SendSlaveData(0xD0);
 TWI_SendSlaveData(0x00);
 TWI_SendSlaveData(0x7F & BinaryToBcd(td.sec));
 TWI_SendSlaveData(0x7F & BinaryToBcd(td.min));
 TWI_SendSlaveData(0x3F & BinaryToBcd(td.hour));
 TWI_SendSlaveData(0x07 & BinaryToBcd(td.day));
 TWI_SendSlaveData(0x3F & BinaryToBcd(td.date));
 TWI_SendSlaveData(0x1F & BinaryToBcd(td.month));
 TWI_SendSlaveData(0xFF & BinaryToBcd(td.year));
 TWI_SendStop();
}

void RTCGetTimeDate(void)
{
 TWI_SendStart();
 TWI_SendSlaveData(0xD0);
 TWI_SendSlaveData(0x00);
 TWI_SendStart();
 TWI_SendSlaveData(0xD1);
 td.sec = (0xFF & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.min = (0x7F & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.hour = (0x3F & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.day = (0x07 & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.date = (0x3F & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.month = (0x1F & BcdToBinary(TWI_ReadSlaveData(ACK)));
 td.year = (0xFF & BcdToBinary(TWI_ReadSlaveData(N_ACK)));
 TWI_SendStop();
}

uint8_t BinaryToBcd(uint8_t x)
{
 uint8_t y;
 y = ((x/10 << 4) | (x % 10));

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 27 of 61

 return y;
}

uint8_t BcdToBinary(uint8_t x)
{
 uint8_t y;
 y = ((((x & 0xF0)>>4) *10) + (x & 0x0f));
 return y;
}

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 28 of 61

AVR ATMEGA16-32 Development Board

Manual

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 29 of 61

Chapter 1

1.0 Board Description:

AVR Atmega16-32 Development Board is a powerful development board which can be

used with any of two AVR microcontrollers Atmega16 or Atmega32 from Atmel.

The board comes with Atmega16 AVR microcontroller installed in DIP package.

AVR Atmega16 is a high performance, low power 8-bit microcontroller from Atmel

featuring 16K Bytes of Flash, 512 Bytes EEPROM, 1K Byte Internal SRAM, Two 8-bit

Timer/Counters, One 16-bit Timer/Counter, Four PWM Channels, 8-channel 10-bit ADC,

32 Programmable I/O Lines and many more.

In order to explore its powerful features and start developing embedded applications the

board is incorporated with 8 LED’s, 4 Push button switch, 4x4 Matrix Keypad, 16x2

Character LCD, 2 Seven segment Displays, 3 Analog Sensors (LM35, LDR, Potentiometer),

Dual DC Motor Drivers, Relays, Buzzer, Stepper Motor Driver, RS-232 interface for Serial

Communication with PC, TWI interface for Real Time Clock and 32kb of External EEPROM.

The Board is extremely useful for learning embedded systems using AVR microcontroller

and developing varieties of embedded application. Any customization is possible because

of its design which allows you to use any of the microcontroller port anywhere in the

application. For the sake of simplicity some peripherals are connected to the port directly

using two pin jumpers which are easily removable is someone wants to use those pin for

some other purpose.

The board operates at 7V to 15V DC power supply or battery and precaution must be

taken before connecting any power source.

1. Please check the power source is within recommended range and then only

connect it to the board.

2. Cross check the polarities before connecting batteries.

3. Do not remove any component unless you are sure how to put it back.

4. Please perform experiment under expert’s supervision or one with knowledge of

electronics.

5. Input power supply should not exceed 15 V DC.

6. Read the user manuals completely before start using this product

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 30 of 61

Chapter 2

2.0 Specifications:

• Microcontroller: ATMEGA16 with 16 MHz crystal (Also supports ATMEGA32)
• Single side high quality PCB.
• Required Power Supply: 7 to 15V DC
• Switches: Reset, Power
• 10 pin FRC and 6 pin straight connectors for In System Programming (ISP)
• On board LCD 16x2 interface
• 4x4 Matrix Keypad interface
• RS232 serial interface along with the MCUs UART jumpers
• 3 on board analog sensors 8 (LM35, LDR, POT) and channels for sensors interfacing
• RTC interface with 3V Li battery
• On board External EEPROM
• Dual Motor driving interface with L293D
• On board 2 Relays
• Eight on board LEDs and 4 Switches
• A Buzzer interfacing
• Stepper Motor interface
• 2 multiplexed 7 Segment Display with BCD to 7 segment decoder chip
• Software and Application examples in WinAVR are provided in the documentation CD

2.1 Kit Contains:
• 1- ATMEGA16-32 Development Board
• 1- 12 DC 1 A Power Supply
• 1- USB 2.0 Cable
• 1- DB9 Serial Cable
• 25 - 1 to 1 jumper cables

• 1- Documentation CD

2.2 Documentation CD contain following Application examples:
• LED interfacing
• IO interfacing
• 7 Segment display interfacing
• LCD interfacing
• 4x4 Matrix Keypad interfacing
• ADC sensor interfacing demo with LCD
• Relay buzzer interfacing using ULN2003 interface
• L293D demo
• UART Serial Communication example
• RTC demo
• External EEEROM interfacing

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 31 of 61

Chapter 3

Board Overview:

1. LCD 16x2 22. Switches Interfacing Header 43. PORTA Pin out Header

2. Relay 1 Pin out Connector 23. 4 Push Button Switches 44. PORTC Pin out Header

3. Relay 2 Pin out Connector 24. 10 Pin FRC Connector for ISP 45. IC Atmega16 (MCU)

4. 12 V DC SPDT Relay1 25. 6 Pin Straight header for ISP 46. PORTB Pin out Header

5. 12 V DC SPDT Relay2 26. 2 Pin out for DC motor 2 47. PORTD Pin out Header

6. Pin out for Stepper Motor 27. 2 Pin out for DC motor 1 48. ULN2003 Header

7. Buzzer 28. IC L293D 49. SCL and SDA Header

8. 7805 with Heat sink 29. DC Motor Driver Interfacing Header 50. Reset Switch

9. 2 Pin Battery Connector 30. 4x4 Matrix Keypad

10. DC Jack 31. 4x4 Matrix Interfacing Header

11. IC ULN2003 32. IC 24C32 32 Kb EEPROM

12. Power On/Off Switch 33. IC DS1307 RTC

13. Power Pin Headers 34. IC LM35 Temperature Sensor

14. DB9 connector 35. LDR

15. IC Max232 36. Potentiometer

16. RXD TXD Pin Selection Jumpers 37. LED Interfacing Header

17. 7 Segment Selection Transistors 38. 8 LED Array

18. 7 Segment Display 1 39. LCD Contrast Adjust POT

19. 7 Segment Display 2 40. LCD R/W to GND Jumper

20. IC 74LS47 41. LCD Interfacing Header

21. 7 Segment Interfacing Header 42. Analog Selection Jumpers

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 32 of 61

Chapter 4

4. Hardware Description: In this chapter various components mounted on the

board and their principal of operation is explained in detail. It is very important that you

go through this chapter before start using the ATMEGA16-32 Development Board

4.0 Power Supply Section:

The power supply section consists of 7805
voltage regulator IC with heat sink and
filtering capacitors, which can supply 1 Amp
current at regulated 5v.

You can connect any DC adapter at DC jack
which can supply 9V to 15V DC and at least
1 Amp of current. A standard adapter of 12V
DC and 1 Amp supply is recommended for
best results.

Instead of DC Adapter External Battery can
also be connected to the through 2 pin
screw terminal. Again battery voltage should
not exceed 15V. Precaution should be taken
while connecting + and – terminal to the
connector.

After you connect the supply board can be
turned on by pressing POWER-SW, ON led
indicates that the board is turned ON as it
glows if supply is fine.

There are +12v, GND and +5v pin out
provided if required to use in any case with
external circuit or on board.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 33 of 61

4.1 Schematic of Power Supply Section:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 34 of 61

Chapter 5

5.0 Microcontroller I/O and Programming Section:

Microcontroller I/O Section:

Microcontroller I/O section consists Atmega16 along with some filtering capacitors for
smooth voltage supply, a 16 MHz crystal oscillator for clock source and I/O pins headers

All 4 ports of Atmega16 are brought out in order to connect them any peripheral on board
through 8 pin straight header

46-PORTB
47- PORTD
48- PORTC
43- PORTD

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 35 of 61

Programming Section:

This section consists of a reset switch and In Systems Programming connectors.

By pressing reset switch microcontroller jumps to the starting location of application
memory. Reset is used when one wants to restart the program in application memory
from initials position.

For programming Atmega16 two type of connectors are provided and programming can
be done by using any of the two which basically suites your programmer.

No need to press reset switch while programming microcontroller as the programmer
automatically resets the microcontroller while programming.

Please read getting started application note for more details on programming.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 36 of 61

5.1 Circuit Schematic for microcontroller and programming section:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 37 of 61

Chapter 6

6.0 LED Array Section:

LED array section consists of high intensity 8 Red
LEDs connect with 8 pin straight male header which
can be connected to any port using 1 to 1 jumper
wires

In order to turn on this particular LEDs one needs
to provide logic 1 i.e. 5v on the I/O pin with which
it is connected.

6.1 LED Array Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 38 of 61

Chapter 7

7.0 Push Button Switches Section:

This section consists of 4 Push button switches are which can be accessed through 4 pin
header and can be connected to any I/O pin through jumper wires

Switches are connected in such a way that if a switch is presses the particular header pin
related to that particular switch will be grounded, which will create a logic 0 i.e. GND on
that particular header pin.

7.1 Schematic for Push Button Switches Section:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 39 of 61

Chapter 8

8.0 7 Segment Display Section:

This section consists of two common anode multiplexed 7 segment displays and a BCD
to 7 segment decoder chip 74LS47 along with the interfacing header. For more details on
working for 74LS47 please read the datasheet of 74LS47.

The interfacing header allows you to input BCD Code through pins D0 D1 D2 D3
As the displays are multiplexed the data pins are common so in order to select a particular
display in which data is to be shown one need to select it through SSD1 an SSD3 Select
pins. These select pins are connected to anode terminals of each display through PNP
transistors. Thus by giving logic 0 on is pin will activate the transistor there by activating
the 7 segment display.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 40 of 61

8.1 7 Segment Display Section Schematic:

D0

D1

D2

D3

SSD1

SSD2

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 41 of 61

Chapter 9
9.0 Character LCD 16 x 2 Sections:

This section consists of LCD 16x2 and its interfacing Header along with the LCD contrast
adjustment POT through which intensity on characters can be adjusted.

The interfacing header consists of control pins of LCD RS, RW, EN and data pins D0 to
D7.

Most of the programmers ground the R/W pin unless it is used in programming so we did
it using an R/W to ground jumper. It will connect to ground as long as jumper is
connected and we can use LCD with only 2 control pins RS and EN. Thus we can reduce
the pins need to interface LCD with microcontroller.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 42 of 61

9.1 Character LCD 16 x 2 Sections Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 43 of 61

Chapter 10

10.0 4 x 4 Matrix Keypad Section:

This Section consists of 4x4 matrix keypad arranged in 4 row and 4 column sequence and
an 8 pin keypad interfacing header which can be connected to microcontroller port in
order to add keypad feature into the application.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 44 of 61

10.1 4 x 4 Matrix Keypad Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 45 of 61

Chapter 11

11.0 Analog Sensors Section:

This section consists of analog sensors connected to the ADC port of microcontroller along
with the selection jumper. The section jumper allows you make a choice whether to
connect the sensor to the ADC pin or if one wants to use that pin for some other purpose
the jumper needs to be remove in order to set that pin free to use with other circuit.

36 is POT connected to ADC2 Pin through jumper
35 is LDR connected to ADC1 Pin through jumper
34 is LM35 connected to ADC0 Pin through jumper

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 46 of 61

11.1 Analog Sensors Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 47 of 61

Chapter 12

12.0 Relays and Buzzer Section:

This section consists of 2 relays and a buzzer connected at the output of ULN2003 Driver
IC. In addition to this a stepper motor can be interface with the stepper motor interfacing
header (6).
All this peripherals are controlled through the ULN2003 Driver IC header (48).

In order to turn on Relay1 one needs to provide logic 1 at the RELAY1 pin of the IC
header (48) and logic 0 to turn it OFF. Similarly Relay2 and buzzer can be turned ON or
OFF. Devices (AC / DC) can be controlled using relays through 3 Pin screw terminal
connectors of specific relay.

Pins A, B, C, and D of the IC header (48) controls the stepper motor if connected. One
needs to provide a proper sequence needed for stepper motor to rotate on this pins and
a stepper motor can be driven through stepper motor header (6).
Connect C1 to Coil 1 of Stepper Motor
Connect C2 to Coil 2 of Stepper Motor
Connect C3 to Coil 3 of Stepper Motor
Connect C4 to Coil 4 of Stepper Motor
Connect VS to Supply Pin of Stepper Motor

VS here Provide +12V to drive DC Stepper Motor at 12V Voltage.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 48 of 61

12.1 Relays and Buzzer Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 49 of 61

Chapter 13

13.0 UART Serial Communication Section:

This section consists of an RS-232 communication circuit made of MAX232 IC (15) and a
9 pin connector (14). A serial communication with PC can be established by connecting
PC COM port to this connector using a serial RS-232 standard cable.

In order to connect this section with microcontroller the two serial communication pins
of microcontroller can be connected through RXD and TXD jumpers (16).
Removing this jumper will disconnect connection between microcontroller and RS-232
communication section.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 50 of 61

13.1 UART Serial Communication Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 51 of 61

Chapter 14

14.0 RTC and EEPROM Section:

This section consists of IC DS1307 (RTC) and IC 24c32 (EEPROM Memory) connected in
TWI or I2C interface. The 2 pin header (49) provides SCL and SDA pin common to this
IC. In order to interface these ICs with microcontroller SCL of this 2 pin header needs to
be connected to PC0 (SCL) and SDA to PC1 (SDA) of microcontroller.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 52 of 61

14.1 RTC and EEPROM Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 53 of 61

Chapter 15

15.0 DC motor Driver Section:

This section consists of a motor driver IC L293D along with the interfacing header and
two 2 pin screw terminal connectors to connect motors.
Two motors can be connected and controlled through this circuit. The header provides
you full control over IC. One needs to give proper logics to the pins in order to driving dc
motors in clockwise and counterclockwise direction.

EN1 logic 1(+5v) on this pin will enable
IN1 and IN2 to control Motor 1

IN1 and IN2 together decides the
direction of Motor1

Similarly,
EN2 logic 1(+5v) on this pin will enable
IN3 and IN4 to control Motor 2

IN3 and IN4 together decides the
direction of Motor2

VS pin gives you flexibility to select the
voltage at which motor needs to
operate. Board provides power outputs
of +5V and +12V, VS can be connected
to any one of this power pins.

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 54 of 61

15.1 DC motor Driver Section Schematic:

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 55 of 61

Using AVR Studio7 for Programing in C/ Assembly Language
1.1 The AVR Studio 7 Integrated Development Environment (IDE)

Atmel Studio 7 is a software development environment developed by Atmel. It
provides single development platform for Atmel's 8- bits, 32-bits and ARM
Cortex-M families of AVR microcontrollers. Some Features of Atmel Studio 7:

 It is a full software development environment with an editor, simulator, programmer, etc.

 It comes with its own integrated open sources C compiler the “AVR GNU C Compiler (GCC)”.
As such you do not need a third party C compiler.

 It provides a single environment to develop programs for 8-bits, 32-bits and ARM Cortex-M
AVR series of microcontrollers.

 It also integrates fully Q-Touch studio.

 Provides support for several programmers including the STK500, AVR Dragon, JTAG ICE etc.

1.2 To Create a Project for developing assembly language programs

Install AVR Studio 7 before continuing the following steps.
https://www.microchip.com/mplab/avr-support/atmel-studio-7

Step 1:
To create assembly project first start Atmel Studio 7 by going to the start
menu on your PC, select Atmel AVR Tools then Atmel Studio 7. See the splash
screen for Atmel Studio 7, as shown figure below, this indicates that Atmel
Studio 7 is starting up. It will take few seconds as the software is bulky.
After Atmel Studio 7 starts the Atmel Studio 7 Start Page will appear as
shown in the figure below.

https://www.microchip.com/mplab/avr-support/atmel-studio-7

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 56 of 61

Fig.1: Initial Screen shot

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 57 of 61

Step:2
Click on New Project pointed to by the blue arrow in the Figure-1.Then
select, Assembler, Give project name as “My Project” and Solution Name as
“Practice Program”. Following window will appear:

A folder “Practice Program” will be created in the “ E” drive of your PC .
This folder will have another folder “My_Project”, where in all your
programs will be stored.

Fig.2: Initial Screen shot

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 58 of 61

Step B4:
 The window below is the device selection screen for Atmel Studio 7.
Scroll down and select the microcontroller you will be using(ATMEGA32A in
for this Lab work).

Fig.3 : Device selection window

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 59 of 61

Step4:
Press OK. Following screen will appear, where in solution name is
“Practice_Program” and Project name is “My Project”, with main.asm is a file
where you can store your programs.
Click on Window-Float or Dock option and get the suitable window view.

This is the Atmel Studio 7 editor window, where you can type your assembly
program. The editor opens with a pre-defined program structure. Programmer
can use the same or overwrite by his own programs.
Creating a new file:
With “Right-Click” on My_Project, Add-New Item--Assembler File, you can
create a new assemble file. Give the proper name and store it in “My_Project”
folder.

Alternately
With Rename option on right-click, you can rename the main.asm file also.

Fig.4 : Editor Window

Microcontroller Laboratory

Department of Electrical Engineering, RCOEM, Nagpur Page 60 of 61

Step 5:
Storing a program using Editor Window:
Type the program given in Figure, on the Atmel Studio 7 editor.
This program has Explanations on the program are given in the comments
fields. Do this exercise by typing the program own your own and Please do
not cut and paste.

Step 6:
Closing/Opening an Existing Project.
Whenever it need be, Programmer can always edit existing project that has
been created, and closed. Also Project can be closed and opened again. Do it
as a self-learning exercise.

Debugging:
 Debugging is a process of finding logical errors in a program.
Also, the debugging can be used to keep the track of flow of a program and
monitor changes of Register, memory location or variables after the execution
of Instructions.
At the beginner level, debugging can also be used to understand and confirm
the operation of instructions, subroutines, statement or functions in a
program.
 As the status of Registers and Memories can be checked after every
instructions, user can identify the part of program where the logic has been
not been properly implemented.
 The debugging can be done either by using a software called
“SIMULATOR” or a Hardware called “EMULATOR”. The debugging using Simulator
software is referred as Simulation while that using Emulator is the
Emulation. Simulation speed much less as compared to Emulation.
 There is no standard method of debugging. Normally following methods
are used for debugging of a program:
 Single Step by Step, using Step Over or Step Into operation.

 Set breakpoint(s) at location where we want to inspect the input or output of the program. Then
we run (or simulate) until the program reach the breakpoint.

 Step Over an instruction or function (or procedure) and inspect the input or output of the
program’s instruction or function (or procedure).

 Step Into the function (or procedure) and inspect the input or output of the program’s function
(or procedure).

